(S HE JavaScript 4aiE)

JASC 2010 H3 H 23 HEk, XUHEIRE, *iligir!

http://blog.sina.com.cn/situdesign

B—% Loading and Execution JIZHIIETT ovvvvurveemereeeereieeiisesess st sesse sttt sessse s 2
B EE Data ACCESS FUHRUTI ceveeeceeeeeeecee ettt 26
H =T DOM Scripting DOM ZIFEooooveieeiiiieiiee ettt 56
FVUE Algorithms and Flow Control FLIEFIFRERFET] co.oveeeeeeeeeeeeeeeecee e 104
H AT Strings and Regular Expressions 247 AR AT IEMIZRIE T oo 139
FINE Responsive INterfaces WA EZ T ..o.ovvieiveeiceceeieeeceeeese et sees s s 184
FEE Ajax TP JavaScript T XML ..ottt 216
% J/\E Programming Practices ZMFESZIERoovoviiceeeeeeeccee ettt 261
% L% Building and Deploying High-Performance JavaScript AppliCAIONSccevrvereiverreerereereieiesneenans 279
BB B TOOIS Tk oo 306

% —% Loading and Execution jN#EMiz4T

JavaScript performance in the browser is arguably the most important usability issue facing developers. The
problem is complex because of the blocking nature of JavaScript, which is to say that nothing else can happen
while JavaScript code is being executed. In fact, most browsers use a single process for both user interface (UI)
updates and JavaScript execution, so only one can happen at any given moment in time. The longer JavaScript

takes to execute, the longer it takes before the browser is free to respond to user input.

JavaScript 7E3 Vi as HIIVERE, AIUAK J& 3 BT B 1A 1) e T B) AT A4 fm] 8. fn] BIEA] JavaSecript
HIBHZE R LM R 2%, Wt /2id, 4 JavaScript 24T I HABKIFF AN RE R i ds b 2. S B, KZH %
A0 B ERE AL B UT BN JavaScript 18474 2 AMESS, 1A —IN TRl L BE — IMESHRAT . JavaScript
IBAT T ZKIA], AR AT S48 2 R SR ST P N 2 BT S I TRl A 2 K

On a basic level, this means that the very presence of a <script> tag is enough to make the page wait for the
script to be parsed and executed. Whether the actual JavaScript code is inline with the tag or included in an
external file is irrelevant; the page download and rendering must stop and wait for the script to complete before
proceeding. This is a necessary part of the page’s life cycle because the script may cause changes to the page
while executing. The typical example is using document.write() in the middle of a page (as often used by

advertisements). For example:

MEEA R, R ERAE <script>PR2E K] H BUEREA TR A YT . e T LAERs . AR SRR
JavaScript fURS 2 WIS R &7 — MV T RISMNESCE R, T R EORE T I R 20 T, SRR
TERIX AR, SRS A BEAkEE . X DU AL A A AN T A RIER 23, A AR AT B AT I AR R B e
W HAFIH] TR document.write)ERHL, 41:
<htmI>

<head>

<title>Script Example</title>

</head>

<body>

<p>

<script type="text/javascript">
document.write("'The date is "' + (new Date()).toDateString());
</script>
</p>
</body>
</html>
When the browser encounters a <script> tag, as in this HTML page, there is no way of knowing whether the
JavaScript will insert content into the <p>, introduce additional elements, or perhaps even close the tag. Therefore,
the browser stops processing the page as it comes in, executes the JavaScript code, then continues parsing and
rendering the page. The same takes place for JavaScript loaded using the src attribute; the browser must first
download the code from the external file, which takes time, and then parse and execute the code. Page rendering

and user interaction are completely blocked during this time.

A AF B 2] — A <script>#r%E N, EW0_EHT HTML GO AOIREE, Joik AN JavaScript f2 5 7E<p>hras
WM BRI, JNEER1E Nk, 1847 JavaScript fURS, SRS ERARSEAEAT . BRI . [RIARROSE R
FEAE A sre JEIENNAL JavaScript (IERE A o B A% 020 B 0 MR SCAF 4GRS, IR 2 G —LEIN], SR)5
M AT I, AR, SO AR A A T A S A

Script Positioning A7 &

The HTML 4 specification indicates that a <script> tag may be placed inside of a <head> or <body> tag in an
HTML document and may appear any number of times within each. Traditionally, script> tags that are used to
load external JavaScript files have appeared in the <head>, along with <link> tags to load external CSS files and
other metainformation about the page. The theory was that it's best to keep as many style and behavior
dependencies together, loading them first so that the page will come in looking and behaving correctly. For

example:

HTML 4 SCRSFE Y, —A<script>hRrZE T LLEIE HTML SRS fi<head>Ei<body>#7%5 , W LATE Hd £ 7k
I R4t b, <script>hr%E H T IIZ4HMT JavaScript U <head>T 73 RIS SL, I8 & <link>hr%E
T INEANER CSS SCAF A H A TR (] 4o W, B 4T DRS MIAT 4 BT AR 8 23 I e — 2, & sen
BABAT, AEAF DU AT LA B EAR B ST R . 4N

<html>

<head>
<title>Script Example</title>
<-- Example of inefficient script positioning -->
<script type=""text/javascript" src="filel.js'"></script>
<script type=""text/javascript" src="file2.js"></script>
<script type=""text/javascript" src=""file3.js'"></script>
<link rel="stylesheet" type=""text/css" href="styles.css'>
</head>
<body>
<p>Hello world!</p>
</body>
</html>
Though this code seems innocuous, it actually has a severe performance issue: there are three JavaScript files
being loaded in the <head>. Since each <script> tag blocks the page from continuing to render until it has fully
downloaded and executed the JavaScript code, the perceived performance of this page will suffer. Keep in mind
that browsers don't start rendering anything on the page until the opening <body> tag is encountered. Putting
scripts at the top of the page in this way typically leads to a noticeable delay, often in the form of a blank white
page, before the user can even begin reading or otherwise interacting with the page. To get a good understanding
of how this occurs, it's useful to look at a waterfall diagram showing when each resource is downloaded. Figure

1-1 shows when each script and the stylesheet file get downloaded as the page is loading.

BRREAUSE R ELFN, EENAIAAAEIERE R & fE<head>HE 70 MI#K I = JavaScript 31t
Db B3> <script>Hr BHEE T T AT RS, H 21 588 T~ 80F1a4T 17 M JavaScript U2)5, T
AEPEA BEARSETEAT . HIP LN IX AT LASESERIAEIR o 15 ICAE, W AR EB 2l <body>hr%E 2 BT, ANaiE
BB AERTER 7 XA VEIE A SO 0, S 80— DUSRSE R SEIR , RO : T
FTITI, ESE R A — IR AR 0T, e 7 ROANBER L, WABE S T TAC R . A T B A
BRI R, FATE AR AT E R A B P . B 1-1 Bon i i #ad 2t A AT
AR RSO 2L e

filel js (N

@ filel. js -
—
ﬂ PUIES. Ja Code executing -
% stvles. css _

Time

Figure 1-1. JavaScript code execution blocks other file downloads

K] 1-1, JavaScript {45z 17 #2 P 28 HAth SO T 4

Figure 1-1 shows an interesting pattern. The first JavaScript file begins to download and blocks any of the
other files from downloading in the meantime. Further, there is a delay between the time at which filel.js is
completely downloaded and the time at which file2.js begins to download. That space is the time it takes for the
code contained in filel.js to fully execute. Each file must wait until the previous one has been downloaded and
executed before the next download can begin. In the meantime, the user is met with a blank screen as the files are

being downloaded one at a time. This is the behavior of most major browsers today.

B 1-1 22— NSRBI . 55— JavaScript SCHITER T2, FEPEZE T HAb SCFRG FE0d /2. JF

&, fE filel js MERSEZJEM file2 js JHIR N AT NER, KR filel js SERIBAT AR I 7] BFA

AL IREAF R — N S TGS BOHsIT 8 2 Jn, A BETTIR H CR T 80 iR, XS Mo, A
A EE R XS R K ZHON A rIAT A,

Internet Explorer 8, Firefox 3.5, Safari 4, and Chrome 2 all allow parallel downloads of JavaScript files. This is
good news because the <script> tags don’t necessarily block other <script> tags from downloading external
resources. Unfortunately, JavaScript downloads still block downloading of other resources, such as images. And
even though downloading a script doesn’t block other scripts from downloading, the page must still wait for the
JavaScript code to be downloaded and executed before continuing. So while the latest browsers have improved
performance by allowing parallel downloads, the problem hasn’t been completely solved. Script blocking still

remains a problem.

Internet Explorer 8, Firefox 3.5, Safari 4, 1 Chrome 2 S5 4T F#% JavaScript 3. IXATH B3R!

—<script>hr%E [E7E NI R IR, A2 B IE HAth<script>hrss. ANSEMI A, JavaScript BT #i4)74

FEHAB TR T 2 A2, FlanE . BMERAZ (/BT #od 12 B A 2R, ST {7y [0 24545 r A1 JavaScript
A N EBIFPAT B G A REARSE . PTLL, B3 il R vFAT TR Mtk Rtz J5, ZmER A4
ffck . BVASRHZETSIH 2 —> o)

Because scripts block downloading of all resource types on the page, it's recommended to place all <script>
tags as close to the bottom of the <body> tag as possible so as not to affect the download of the entire page. For

example:

DAL T A B 2 HL A, T B R B R BT AHERE I ANE R 5 T <script>br2 71 R v B L <body>
PR SRABEIAL ., RN B DU T B .
<html>
<head>
<title>Script Example</title>
<link rel="stylesheet" type="text/css" href="styles.css">
</head>
<body>
<p>Hello world!</p>
<-- Example of recommended script positioning -->
<script type=""text/javascript" src="filel.js"></script>
<script type=""text/javascript" src="file2.js"></script>
<script type=""text/javascript" src="file3.js'"></script>
</body>
</htm]>
This code represents the recommended position for <script> tags in an HTML file. Even though the script
downloads will block one another, the rest of the page has already been downloaded and displayed to the user so
that the entire page isn’t perceived as slow. This is the Yahoo! Exceptional Performance team’s first rule about

JavaScript: put scripts at the bottom.

AR e R T e I <script>Hr 25 7F HTML SCHFFR I E . RVE AR N 82 (B B AHRRZE, (Hilf 4
TEGE R H B R RS T, AT PEE AR BAKE . X IFZYahoo! HLBkERE T
JavaScript P58 —45 8 B BIATRZE R -

Grouping Scripts 21 A

Since each <script> tag blocks the page from rendering during initial download, it's helpful to limit the total
number of <script> tags contained in the page. This applies to both inline scripts as well as those in external files.
Every time a <script> tag is encountered during the parsing of an HTML page, there is going to be a delay while

the code is executed; minimizing these delays improves the overall performance of the page.

HI B <script>br%E T B BHLIE U AT ARE, A BLRR I BT i <script>/a BB T DL L RE . XS HL
WS Y BREA A MBI AS R 1E 4525 DU 2 — A <script>Hra& I, S A — B E] A A0S 4k
AT B MR EEFELR I 18] AT LA SR O PR B A4 e

The problem is slightly different when dealing with external JavaScript files. Each HTTP request brings with it
additional performance overhead, so downloading one single 100 KB file will be faster than downloading four 25
KB files. To that end, it's helpful to limit the number of external script files that your page references. Typically, a
large website or web application will have several required JavaScript files. You can minimize the performance
impact by concatenating these files together into a single file and then calling that single file with a single <script>
tag. The concatenation can happen offline using a build tool (discussed in Chapter 9) or in real-time using a tool

such as the Yahoo! combo handler.

XA] {15 4 ER JavaScript UL IS FERE A ARl B4 HTTP iR AR & =R B4 P RE Al N a—
A 100KB HSCAFEE 2 0UA 25KB KSR SEtR . B2, b5 FIAMBA SO R . R, — AR
o4 3t i P 1 P 7 2 22 IR 1 3K JavaScript SCfF o PRAT PR IZ LSO RES il — A 30, R 2 —<script>tr
oI AT LUR PR RERUR o X —RANB TAE Tl —MTR T RS GRATES 9 Fiti) , 8iF —
ANSER T H, 1% 41“Yahoo! combo handler”

Yahoo! created the combo handler for use in distributing the Yahoo! User Interface (YUI) library files through
their Content Delivery Network (CDN). Any website can pull in any number of YUI files by using a

combo-handled URL and specifying the files to include. For example, this URL includes two files:

http://yui.yahooapis.com/combo?2.7.0/build/yahoo/yahoo-min.js&2.7.0/build/event/event-min.js

This URL loads the 2.7.0 versions of the yahoo-min.js and event-min.js files. These files exist separately on the
server but are combined when this URL is requested. Instead of using two <script> tags (one to load each file), a

single <script> tag can be used to load both:

Yahoo! MBI “Yahoo! [/4210 (Yahoo! User Interface, YUIL) “JEQ)E— P BLE& AN, X ZETE
AT B #1845 (Content Delivery Network, CDN D) ”SZHR 1] o AT Ar]— A 1 sk o] LAAT A — B & BJ#:URL
FRHAE YUI X R e fF. i, TR URL G & A S

http://yui.yahooapis.com/combo?2.7.0/build/yahoo/yahoo-min.js&2.7.0/build/event/event-min.js

I URL A 2.7.0 fiZAS 1) yahoo-min.js I event-min.js SC2F. IXEESCHEAERRS 28 LA DN 0B RIS, (B
A SS AR URL 353K, AN SCPRR e IR Rl 20 7 oo EIERRAO %, AR 2N
<script>t54% (RIS —N3CF) . —<scripttra& st al EUINEt AT

<html>
<head>
<title>Script Example</title>
<link rel="stylesheet" type="text/css" href="styles.css">
</head>
<body>
<p>Hello world!</p>
<-- Example of recommended script positioning -->
<script type=""text/javascript"
src=""http://yui.yahooapis.com/combo?2.7.0/build/yahoo/yahoo-min.js&2.7.0/build/event/event-min.js' ></s
cript>
</body>
</htm]>
This code has a single <script> tag at the bottom of the page that loads multiple JavaScript files, showing the

best practice for including external JavaScript on an HTML page.

AR R —A><script>#r%s, A7 T DURIFIRES, 122 4> JavaScript (. X &7E HTML G+ -
Z/NHMER JavaScript HIEFE 7.

Nonblocking Scripts JEFH ZE 4

JavaScript's tendency to block browser processes, both HTTP requests and UI updates, is the most notable
performance issue facing developers. Keeping JavaScript files small and limiting the number of HTTP requests
are only the first steps in creating a responsive web application. The richer the functionality an application
requires, the more JavaScript code is required, and so keeping source code small isn't always an option. Limiting
yourself to downloading a single large JavaScript file will only result in locking the browser out for a long period
of time, despite it being just one HTTP request. To get around this situation, you need to incrementally add more

JavaScript to the page in a way that doesn't block the browser.

JavaScript {5 7] F-BHZE 3 S0 A% S LLAbFE L FE, i HTTP 5 sRASFL R, 12 T & 3 Tl 1) 5 2 2 vk
REMI . {R%F JavaScript SCAFFL/DN, FEMEI HTTP & k%S, 2008 R M) W IOy HInE—5.
—/N R T A S HIThEEE, T 5 JavaScript {UI AR, (RIFRID RN A B2 —Fligde. -
BN H K JavaScript SCAFHAE IR HTTP 35K, A1 BUE) Wy — RBUN Al XA g, 4
THEL) DL R B PN N JavaScript, FEFREE F AN S BHIE R I AS o

The secret to nonblocking scripts is to load the JavaScript source code after the page has finished loading. In
technical terms, this means downloading the code after the window's load event has been fired. There are a few

techniques for achieving this result.

AEBH ZE A IR EAE T, S SE RN Ja, FRNEL JavaScript 55 . MEIARME T, XEMERE
window 1] load Sk tH 2 J5 4 N2 . B LA 715 AT PASEIUX A R

Deferred Scripts JEHAMIAS

HTML 4 defines an additional attribute for the <script> tag called defer. The defer attribute indicates that the
script contained within the element is not going to modify the DOM and therefore execution can be safely
deferred until a later point in time. The defer attribute is supported only in Internet Explorer 4+ and Firefox 3.5+,
making it less than ideal for a generic cross-browser solution. In other browsers, the defer attribute is simply
ignored and so the <script> tag is treated in the default (blocking) manner. Still, this solution is useful if your
target browsers support it. The following is an example usage:

<script type="text/javascript" src="filel.js" defer></script>

A <script> tag with defer may be placed anywhere in the document. The JavaScript file will begin downloading at
the point that the <script> tag is parsed, but the code will not be executed until the DOM has been completely
loaded (before the onload event handler is called). When a deferred JavaScript file is downloaded, it doesn't block

the browser's other processes, and so these files can be downloaded in parallel with others on the page.

HTML 4 Hj<script>Fp285E L T — 9 RJEIE: defer. XA defer B G & FATEEHIMAAITH B
fZ DOM, [HIEARHS AT LIRS JS hAT . defer J& 1 4% Internet Explorer 4 1 Firefox 3.5 B & RRAS K1 30 Wi % T ¢
FF, e AR RS AT S . TEHAR BT AR b, defer JE IR NG, <script>hREEAZ FBIA TS
A AEHE GERPHIE) o W SRR B SRR IS, X RO —Rg MR . melm T

<script type="text/javascript" src="filel.js" defer></script>

—/Nir B defer B <script>trZ3 0] LUBCE 1E SCRY TR AL B« X N FF) JavaScript SCARG 7E<script>#4 g
I R3h M, (A A ST, B2 DOM M#5e e (7F onload HFAF AR I Z AT « 25— defer
[JavaScript SCAFHE T 2T, EANSPHIER WS H A ALY IR, By AR LSS AR n] LU G0 1 il HoAh B8 —
EIFAT .

Any <script> element marked with defer will not execute until after the DOM has been completely loaded; this
holds true for inline scripts as well as for external script files. The following simple page demonstrates how the

defer attribute alters the behavior of scripts:

FEFTH A defer JBEFI<script>TuZAE DOM I TE L BT AN HARAT, AR IE AIERBIASIE R SR IA ST
i, BRI TIPS 1 defer JEPEQAT SE W BIAAT A -
<htmI>
<head>
<title>Script Defer Example</title>
</head>
<body>
<script defer>
alert("'defer");
</script>

<script>

alert("script");
</script>
<script>
window.onload = function(){
alert("load");
35
</script>
</body>
</html>
This code displays three alerts as the page is being processed. In browsers that don't
support defer, the order of the alerts is “defer”, “script”, and “load”. In browsers that
support defer, the order of the alerts is “script”, “defer”, and “load”. Note that the
deferred <script> element isn't executed until after the second but is executed before

the onload event handler is called.

X EEARG A BT AL BRI A o g5 — AN EARE o 2 SR WS AN SCRF defer Jm Ak, I g N TERE HO I 2
“defer”, “script”fl“load”. 4N F:i W #% X HF defer JEME, P2 3 H XS HE I IF & “script”, “defer”F1“load”.
R, ARicN defer I<script>Tu i AN EERAESR /NG HISIT, TMA27E onload A GALEE 2 A A .

If your target browsers include only Internet Explorer and Firefox 3.5, then deferring scripts in this manner can
be helpful. If you have a larger cross-section of browsers to support, there are other solutions that work in a more
consistent manner.

TARARIE H AR 5028 R AFE Internet Explorer Al Firefox 3.5, HB4 defer BIAHISEA H . WRIR TR E 3R
W5 U 22 R B0 2%, 84084 B U SE T 20

Dynamic Script Elements ZIZSBIATTE

The Document Object Model (DOM) allows you to dynamically create almost any part of an HTML
document using JavaScript. At its root, the <script> element isn't any different than any other element on a page:
references can be retrieved through the DOM, and they can be moved, removed from the document, and even

created. A new <script> element can be created very easily using standard DOM methods:

SRS HAE R CDOMD St VR A JavaScript 2281 HTML [L P-4 OB P 78 AR A TE T, <script>
TR E5TmEM TR AT AR 5IHZEUES DOM T2, TN s, Mikk, dnr
LIB A, — ST i<script>7C 3 AT LA 25) i@ i Arvf DOM oR 40617 -
var script = document.createElement ("script");
script.type = "text/javascript";
script.src = "filel js";

document.getElementsByTagName r("head")[0].appendChild(script);

This new <script> element loads the source file filel.js. The file begins downloading as soon as the element is
added to the page. The important thing about this technique is that the file is downloaded and executed without
blocking other page processes, regardless of where the download is initiated. You can even place this code in the
<head> of a document without affecting the rest of the page (aside from the one HTTP connection that is used to

download the file).

Fri<script>7CER N filel js JEICHF . BT 0 RSN 2 T2 S5 L2008 N 3. MHEORIHE e T
TWTEATRE A BN T2, SRR T B AT # AN e FH IR H A DU AR R B o i 28 vy LA IR LLA QRS TR
<head>#Hf 7311 A2 0 H A 86 73 1) U ACRSIE O (R 77T T R 8O0 HTTP 38

When a file is downloaded using a dynamic script node, the retrieved code is typically executed immediately
(except in Firefox and Opera, which will wait until any previous dynamic script nodes have executed). This works
well when the script is self-executing but can be problematic if the code contains only interfaces to be used by
other scripts on the page. In that case, you need to track when the code has been fully downloaded and is ready for

use. This is accomplished using events that are fired by the dynamic <script> node.

ST R B A AY AT B, IR RIS BI AT (R T Firefox I Opera, A/ 257 AT
FTA & MAT RAT 25D o AR« Bisfr R IN X —HlHe T IR, (B WRMEA R &M utm
FABBAE AR AL 1, Wk B RO T, R 2R ER A T 8 SO HE & 2 1 L. 7T
LAE I B A <script>"11 s A& H SR 2 G AE B

Firefox, Opera, Chrome, and Safari 3+ all fire a load event when the src of a <script> element has been

retrieved. You can therefore be notified when the script is ready by listening for this event:

Firefox, Opera, Chorme FI Safari 3+&7E<script>"1 mAZW 72 il 2 J5 & H—A load FF. {RATPAEHTIX —

FF, LIS S BIAUE & L (0 TE R -

var script = document.createElement ("script")
script.type = "text/javascript";
//Firefox, Opera, Chrome, Safari 3+
script.onload = function() {

alert("Script loaded!");
s
script.src = "filel.js";

document.getElementsByTagName r("head")[0].appendChild(script);

Internet Explorer supports an alternate implementation that fires a readystatechange event. There is a
readyState property on the <script> element that is changed at various times during the download of an external

file. There are five possible values for readyState:

Internet Explorer 3 #5575 — M7 20, B &K H—) readystatechange F4. <script>JG#H —> readyState

JEIE, ERERE N SNBSS AR M S . readyState 47 TLAEE :

"uninitialized" The default state

“uninitialized”ER IR 2

"loading" Download has begun

“loading” F#&IT &

"loaded" Download has completed

“loaded” N & 5E %

"interactive" Data is completely downloaded but isn't fully available

“interactive” 2,5 il B A 0] FH

"complete" All data is ready to be used

“complete” T A Kl D& k& 1T

Microsoft's documentation for readyState and each of the possible values seems to indicate that not all states
will be used during the lifetime of the <script> element, but there is no indication as to which will always be used.
In practice, the two states of most interest are "loaded" and "complete". Internet Explorer is inconsistent with
which of these two readyState values indicates the final state, as sometimes the <script> element will reach the
"loaded" state but never reach "complete" whereas other times "complete" will be reached without "loaded" ever
having been used. The safest way to use the readystatechange event is to check for both of these states and remove

the event handler when either one occurs (to ensure the event isn't handled twice):

WSO i, fE<scrip>TC R ARG A A, readyState FIXEEHUEA—E 2 H I, (FHEATEHW
LI (H RSB AR, LR, AT DS “loaded” F1“complete™ kA& . Internet Explorer XX >
readyState {H IT R ZAREFFA—EL, AW <script>T0 % 2153 2 “loader” HI AN H Bl “complete”, {H734h
—BE LN I complete” 1T AN 2 “loaded” . fi T4 MR JE T readystatechange 2544 HH R 253X P F{UER
A, FFHE A MRS IR, B readystatechange FHAFE A (FRUFSHAF A SHE LI -
var script = document.createElement ("script")
script.type = "text/javascript";

//Internet Explorer
script.onreadystatechange = function() {
if (script.readyState = "loaded" || script.readyState == "complete"){
script.onreadystatechange = null;
alert("Script loaded.");
§
s
script.src = "filel.js";
document.getElementsByTagName r("head")[0].appendChild(script);
In most cases, you'll want to use a single approach to dynamically load JavaScript files. The following function

encapsulates both the standard and 1E-specific functionality:

REHAEWT, ARA R —A R 20k o] LASE IR JavaScript SCEFIIBHAS INEL . T T BR Bkt 25 T A s

LR TE SEELPT A5 i D) BE -

function loadScript(url, callback){
var script = document.createElement ("script")
script.type = "text/javascript";
if (script.readyState){ //IE
script.onreadystatechange = function(){
if (script.readyState = "loaded" || script.readyState == "complete"){
script.onreadystatechange = null;
callback();
H
s
} else { //Others
script.onload = function(){
callback();
s
§
script.src = url;

document.getElementsByTagName r("head")[0].appendChild(script);

This function accepts two arguments: the URL of the JavaScript file to retrieve and a callback function to
execute when the JavaScript has been fully loaded. Feature detection is used to determine which event handler
should monitor the script's progress. The last step is to assign the src property and add the <script> element to the

page. The loadScript() function is used as follows:

VLR B A28 JavaScript SCIEM URL, F1—/~4 JavaScript F2I0 58 i il 2 R R 2. 1t
Fodr T AR R i . B f5—20, WOE sre JBYE, R <script>Tu AN IIE GUM . Ik loadSeript()eRi %1
R T IEIR :
loadScript("file1.js", function(){

alert("File is loaded!");

s

You can dynamically load as many JavaScript files as necessary on a page, but make sure you consider the
order in which files must be loaded. Of all the major browsers, only Firefox and Opera guarantee that the order of
script execution will remain the same as you specify. Other browsers will download and execute the various code
files in the order in which they are returned from the server. You can guarantee the order by chaining the

downloads together, such as:

PRAT LAFE G B & INEAR 2 JavaScript SCIF, (HENER, WG A RIESCHINERNIR . BT 20
st RAT Firefox M1 Opera fRAEBIASZ IRARTE & IR RAT o« AR A8 1542 IR 55 a3k Bl E AT TR
FP N EGFIEAT A RIS SO PR LUK N Bt B B AE R LUGREAR TS, T
loadScript("file1.js", function(){
loadSecript("file2.js", function(){

loadScript("file3.js", function(){

alert("All files are loaded!");

1);

1);

This code waits to begin loading file2.js until filel.js is available and also waits to download file3.js until
file2.js is available. Though possible, this approach can get a little bit difficult to manage if there are multiple files

to download and execute.

AR S5 filel js T H 2S5 A FFaRNEL file2.js, 25 file2.js Al FH 2 JG 74 FF AR INZ file3 js. SARILITEAT
AT, ABARE N EAIPAT SR 2, I AT LR BRI

If the order of multiple files is important, the preferred approach is to concatenate the files into a single file
where each part is in the correct order. That single file can then be downloaded to retrieve all of the code at once

(since this is happening asynchronously, there's no penalty for having a larger file).

MR Z A SRR+ 7y B3, AP HIME R X B SO A% B 00 IR P e B i — A S o Jar ST
A= R ET A (TR 2R #ATH, A — NS a A fik) .
Dynamic script loading is the most frequently used pattern for nonblocking JavaScript downloads due to

cross-browser compatibility and ease of use.

BIASIIA N EOEIERH JE JavaScript T & A, OGS RT LA Y 4s, 1 H sz A .
XMLHttpRequest Script Injection XHR JIAEA

Another approach to nonblocking scripts is to retrieve the JavaScript code using an XMLHttpRequest (XHR)
object and then inject the script into the page. This technique involves creating an XHR object, downloading the
JavaScript file, then injecting the JavaScript code into the page using a dynamic <script> element. Here's a simple

example:

A CLAEBH 28 77 2C3RAG B A 1 v A XMLHttpRequest(XHR) X G4 BIASE N B U . AR
HAE A — XHR A5, 285 T2 JavaScript X, #:5 H— A sha&<script>7u %44 JavaScript fAR7FE A T
[fle 12— a4

var xhr = new XMLHttpRequest();
xhr.open("get", "filel.js", true);
xhr.onreadystatechange = function() {
if (xhr.readyState == 4){
if (xhr.status >= 200 && xhr.status <300 || xhr.status == 304){
var script = document.createElement ("script");
script.type = "text/javascript";
script.text = xhr.responseText;
document.body.appendChild(script);
§
§
s

xhr.send(null);

This code sends a GET request for the file filel.js. The onreadystatechange event handler checks for a
readyState of 4 and then verifies that the HTTP status code is valid (anything in the 200 range means a valid
response, and 304 means a cached response). If a valid response has been received, then a new <script> eler

created and its text property is assigned to the responseText received from the server. Doing so essentially ¢

a <script> element with inline code. Once the new <script> element is added to the document, the code is

executed and is ready to use.

WAL 17 i 4% 2% 3% — 3R filel js SCPFH) GET i 3K - onreadystatechange S Ab B 5 UM 2T readyState
A 4, RFERAT HTTP RS Z ARG QXX A AMEIN, 304 R —MEAMWN) o W5k
BT —EREN, FBAFEIE B H<script>TGE, K E SO R T B 9 MR 45 a0 2
responseText 44 £ o IXFEMEL PR LB — AN A WA U i<script>Tt 3R . — BT <script>TC 2 4% 35 1 2

SOR, AR HRAT, TR

The primary advantage of this approach is that you can download the JavaScript code without executing it
immediately. Since the code is being returned outside of a <script> tag, it won't automatically be executed upon
download, allowing you to defer its execution until you're ready. Another advantage is that the same code works

in all modern browsers without exception cases.

XML EEAL U2, URAT LU BOAAZRIAAT B JavaScript 485 o A5 3R [RI7E <script>hr%s 2 S (Hi
FIE BN S <script>hrE 200D, B MRE AR AT, XARIRATLHEE AT, B8 DIAMES L 1.
TR FIRERACHEAE BT A BRI S ds A A S 5 R H

The primary limitation of this approach is that the JavaScript file must be located on the same domain as the
page requesting it, which makes downloading from CDNs impossible. For this reason, XHR script injection

typically isn't used on large-scale web applications.

W7V B PRI E : JavaScript SCHFL 20 S DURTBCE /R R] — M, A EEAM CDNs 2% (CDN $5“P
RHIHM 44 (Content Delivery Network) ”, R 002 ha (RZHBIA)Y — 422D . FRAXANERE, KH
R T8 AR A XHR AR E A B AR

Recommended Nonblocking Pattern #EF£HIERH 2=

The recommend approach to loading a significant amount of JavaScript onto a page is a two-step process: first,
include the code necessary to dynamically load JavaScript, and then load the rest of the JavaScript code needed

for page initialization. Since the first part of the code is as small as possible, potentially containing just the

loadScript() function, it downloads and executes quickly, and so shouldn't cause much interference with the page.

Once the initial code is in place, use it to load the remaining JavaScript. For example:

HEE I 17) DL 1A DNZ8K & JavaScript 7755 AP DI SH—22, B &3h& 02 JavaScript AT 77 FIACRS,
SR IR TR A A AL BT T (1% JavaScript Z AMUEE 7. XEB/CIZRE /N, w88 R4 5 loadScript() A%,
BN EAEAT AR IR, AN TR AR KT SIS HE & LT 2 G, Ak i 43 4 JavaScript.
Bl an:

<script type="text/javascript" src="loader.js"></script>
<script type="text/javascript">
loadScript("the-rest.js", function(){
Application.init();
1);

</script>

Place this loading code just before the closing </body> tag. Doing so has several benefits. First, as discussed
earlier, this ensures that JavaScript execution won't prevent the rest of the page from being displayed. Second,
when the second JavaScript file has finished downloading, all of the DOM necessary for the application has been
created and is ready to be interacted with, avoiding the need to check for another event (such as window.onload)

to know when the page is ready for initialization.

KA TECE TE body IR HIFRAE</body>Z B« IXARMCA JLAEFAL: Ho%, BATIIIeE RIEE, i
i {R JavaScript AT AN 22 50 O T HAR I 70 B . ik, 488 34 JavaScript SCRFSERC T2, A A
PR T 620) DOM LU BUEELS T, FHUF s i) vt 38 S (i€ ARSI A0 B2 (1020 window.onload)
RABHN ML T AR T .

Another option is to embed the loadScript() function directly into the page, thus avoiding another HTTP

request. For example:

T NEPEE HEEK loadScript() BAEIR ALE DU, X AT LB G 7 — Ik HTTP iE3K. #il4n:

<script type="text/javascript">
function loadScript(url, callback){

var script = document.createElement ("script")

script.type = "text/javascript";

if (script.readyState){ //IE

script.onreadystatechange = function() {
if (script.readyState == "loaded" ||
script.readyState = "complete"){
script.onreadystatechange = null;

callback();

§
s
} else { //Others
script.onload = function(){
callback();
s
§
script.src = url;
document.getElementsByTagName r("head")[0].appendChild(script);
§
loadScript("the-rest.js", function(){
Application.init();
1);

</script>

If you decide to take the latter approach, it's recommended to minify the initial script using a tool such as YUI

Compressor (see Chapter 9) for the smallest byte-size impact on your page.

TR APR e A I RO, 3R <Y UI Compressor” (2 L5 9 £5) 83 LA T FOE A1 a0 i A 4

PENR AN TR

Once the code for page initialization has been completely downloaded, you are free to continue using

loadScript() to load additional functionality onto the page as needed.

— B SUHARAACRS T 8e . R v] LU A loadSeript() o 8 i I BT 75 B ARAH D e R 4L

The YUI 3 approach

The concept of a small initial amount of code on the page followed by downloading additional functionality is

at the core of the YUI 3 design. To use YUI 3 on your page, begin by including the YUI seed file:

YUI 3 (kL it B O s JH—MRANIATAG RS, MR EEACRS . Z5E S0 EAEA YUI 3, &
et E YUI A7 3Cf

<script type="text/javascript"

src=http://yui.yahooapis.com/combo?3.0.0/build/yui/yui-min.js></script>

The seed file is around 10 KB (6 KB gzipped) and includes enough functionality to download any other YUI
components from the Yahoo! CDN. For example, if you'd like to use the DOM utility, you specify its name

("dom") with the YUI use() method and then provide a callback that will be executed when the code is ready:

RSO R 2 10KB (gzipped [E46)5 6KB) 3 M Yahoo! CDN T# YUI 4¢FFT R HIE S ThAE. 4%
Bk Ut, WIRARAEEH DOM Thig, fRalLisHEma s ("dom™) , fR#% YUI [useO R %L, Fifft—
ANBIE R, AR A 4 3K P15k i

YUI().use("dom", function(Y){

Y .DOM.addClass(docment.body, "loaded");

s

This example creates a new instance of the YUI object and then calls the use() method. The seed file has all of
the information about filenames and dependencies, so specifying "dom" actually builds up a combo-handler URL
with all of the correct dependency files and creates a dynamic script element to download and execute those files.
When all of the code is available, the callback method is called and the YUI instance is passed in as the argt

allowing you to immediately start using the newly downloaded functionality.

AT G T — 50T YUT SCH, AR5 TR useQpR . P SCPEIIAT OC T 3CE B RIS R N AT AT
F R TR E “dom™sBs BT TS i IERARAR O BTN <k & SR URL, JF 818 —>3hs i
ATCER P EOTPATREE S A AR AN, [FHR R B, YUL SRR S E N, EfRaT
STELAE AT T BRI DIRE -

The LazyLoad library

For a more general-purpose tool, Ryan Grove of Yahoo! Search created the Lazyl.oad library (available at
http://github.com/rgrove/lazyload/). LazyLoad is a more powerful version of the loadScript() function. When

minified, the LazyLoad file is around 1.5 KB (minified, not gzipped). Example usage:

fER— R AHM L E, Yahoo! Search [f] Ryan Grove % T LazyLoad /& (Z L
http://github.com/rgrove/lazyload/) . LazyLoad f&t /5 5% K1) loadScript() A% . LazyLoad ¥&46 2 J5 HA K

2 1.5KB CkE4a, MR gzip K480 o FREZGIIT

<script type="text/javascript" src="lazyload-min.js"></script>
<script type="text/javascript">
LazyLoad.js("the-rest.js", function() {
Application.init();
1);

</script>

LazyLoad is also capable of downloading multiple JavaScript files and ensuring that they are executed in the
correct order in all browsers. To load multiple JavaScript files, just pass an array of URLSs to the LazylLoad.js()

method:

LazyLoad & 0] LLN 2% /> JavaScript SCAF, FHORUECATE AW ey EARRENS & B E #7407 » 22
hn# % 4~ JavaScript 3CF, R EHA LazyLoad.js() B E L8 —4 URL BASIZA & :

<script type="text/javascript" src="lazyload-min.js"></script>
<script type="text/javascript">

LazyLoad.js(["first-file.js", "the-rest.js"], function(){

Application.init();
1);

</script>

Even though the files are downloaded in a nonblocking fashion using dynamic script loading, it's
recommended to have as few files as possible. Each download is still a separate HTTP request, and the callback

function won't execute until all of the files have been downloaded and executed.

BRI £SO AR AR AN ARBZE K 7 30 ME B A BIA N, e N R AT BE sk b SO R . BRI L)
SR /N HTTP 83K, (Bl e& £CH 2 BT S0 MO AT 2 2 R A4 =isdT.

The LABjs library

Another take on nonblocking JavaScript loading is LABjs (http://labjs.com/), an open source library written by
Kyle Simpson with input from Steve Souders. This library provides more fine-grained control over the loading
process and tries to download as much code in parallel as possible. LABjs is also quite small, 4.5 KB (minified,

not gzipped), and so has a minimal page footprint. Example usage:

75— A~AEBHZE JavaScript IN#)F /& LABjs Chttp:/labjs.com/) , Kyle Simpson 5[] —MFFYEE, H Steve
Souders) o BEEXS MNBGLFRREAT OGN R, 225 0MT FEULATREZ RIS . LABjs A/, H
A 4.50KB 545, MARH gzip R451) , BT EA BRI R HVESS:

<script type="text/javascript" src="lab.js"></script>
<script type="text/javascript">
SLAB.script("the-rest.js")
wait(function(){
Application.init();
$);

</script>

The $LAB.script() method is used to define a JavaScript file to download, whereas $LAB.wait() is used t~

indicate that execution should wait until the file is downloaded and executed before running the given funct

LAB;js encourages chaining, so every method returns a reference to the SLAB object. To download multiple

JavaScript files, just chain another $LAB.script() call:

$LAB.scriptO A% T T 24> JavaScript X £F, SLAB.wait()BRZ0H THRH — DA%, 2R BRSO
TEGEIHET G A SR . LABjs Bih#EEE, A REORE— R MSLAB M5 H. ZT#
Z A~ JavaScript U, A SEEAN 55— NSLAB.scriptO A, 1 :

<script type="text/javascript" src="lab.js"></script>
<script type="text/javascript">
SLAB.script("first-file.js")
.script("the-rest.js")
wait(function(){
Application.init();
$);

</script>

What sets LAB;js apart is its ability to manage dependencies. Normal inclusion with <script> tags means that
each file is downloaded (either sequentially or in parallel, as mentioned previously) and then executed

sequentially. In some cases this is truly necessary, but in others it is not.

LABjs FIflURs Z A7 T B REWS I BLKIMUR AR . — BBCR Ui <script> A28 B IR A T SO N30 (BRI,
AT, WATHTIR) o AREARIUF AT . EREEE N R AR L, AR

LAB;s allows you to specify which files should wait for others by using wait(). In the previous example, the
code in first-file.js is not guaranteed to execute before the code in the-rest.js. To guarantee this, you must add a

wait() call after the first script():

LABjs (il wait() e& £ SCVFIRATEMPLESCIT A% S A5 FLAb SOAF . FERTTHII B 7o first-file js (4 CH AR

UFLE the-restjs Z AIIBIT« ATRIFIX — 8L, RUILES — scriptO 202 JGE I —> wait()If H :

<script type="text/javascript" src="lab.js"></script>

<script type="text/javascript">

SLAB.script("first-file.js").wait()
.script("the-rest.js")
wait(function(){

Application.init();
$);

</script>

Now the code in first-file.js is guaranteed to execute before the code in the-rest.js, although the contents of the

files are downloaded in parallel.
BAE, first-filejs FIACRSIRUESTE the-restjs ZRIHAT, BRI U A A 2 FHAT T 2.
Summary 245

Managing JavaScript in the browser is tricky because code execution blocks other browser processes such as
UI painting. Every time a <script> tag is encountered, the page must stop and wait for the code to download (if
external) and execute before continuing to process the rest of the page. There are, however, several ways to

minimize the performance impact of JavaScript:

P 3 5 Y JavaScript AU/ NBCT R L UG AR AT BHLZE 1 A WS b B AR, v n Al
Pzl BRRIBR|<script>hRas, TUHIMLAUE FREAFAU N3 CURRUEAMIRID JFRAT, RJE RS
PG AR AR 7o B2, A JLAITIERT LR/ JavaScript X BE MR -

* Put all <script> tags at the bottom of the page, just inside of the closing </body> tag. This ensures that the page

can be almost completely rendered before script execution begins.

¥ I A <script>HrA% JICE 7E T FIEHE, 55 body J% HIFRAE</body>HI b5« IHidk AT AGRIIE T 7 A

IBAT Z AT S AT -

* Group scripts together. The fewer <script> tags on the page, the faster the page can be loaded and become

interactive. This holds true both for <script> tags loading external JavaScript files and those with inline code

A 3T A DU <script>Fra&ilib, GUI P naside fEmisetie, m Ayt SEARE . AR AMBIIA
SCAFIE 2 P IRAR RS AR 2 it

* There are several ways to download JavaScript in a nonblocking fashion:
— Use the defer attribute of the <script> tag (Internet Explorer and Firefox 3.5+ only)
— Dynamically create <script> elements to download and execute the code

— Download the JavaScript code using an XHR object, and then inject the code into the page

B LA ar L A JERE %€ 77 X 2 JavaScript:

—— Ay <script>trZE 8 N defer JEYE (3@ H T Internet Explorer #1 Firefox 3.5 A _FfAS)

A <script>7eER, HE N EIFRAT UG

— M XHR X% A, FEEAZE| 0

By using these strategies, you can greatly improve the perceived performance of a web application that

requires a large amount of JavaScript code.

I R e, AR AR R B AR L AT JavaScript AURS I 19 BT 5K PR PE RE o

% Data Access Z(IEVT A

One of the classic computer science problems is determining where data should be stored for optimal reading
and writing. Where data is stored is related to how quickly it can be retrieved during code execution. This problem
in JavaScript is somewhat simplified because of the small number of options for data storage. Similar to other
languages, though, where data is stored can greatly affect how quickly it can be accessed later. There are four

basic places from which data can be accessed in JavaScript:

LA HNUREE > BEUZ A Hs B A7 AR At)y, DLSEBRB R AT 58008 « Ba A el &L
KA AT WA B AR B BN B o 7F JavaScript Y, B m) UAHXT (1B, RN B A7 A D7
AR RS, IEWHARE S HFE, BRAF A A E R R BIVT 3L 7E JavaScript FA7 DU M LA (1 £y
AR

Literal values B &
Any value that represents just itself and isn't stored in a particular location. JavaScript can represent strings,
numbers, Booleans, objects, arrays, functions, regular expressions, and the special values null and undefined as

literals.

HEBEEMUAREACD, MAEMTREMNE . JavaScript FEERAHE: F/RH, 8P, MRHE W%,
B, G ENRGA, BATRRE SN E, BURARIE o

Variables %% &

Any developer-defined location for storing data created by using the var keyword.

TERNGUEH var 87 B T A7 i H B

Array items £{ZH 17

A numerically indexed location within a JavaScript Array object.

HAEHFR], it— JavaScript 2L X5 .

Object members X} 5 i (7

A string-indexed location within a JavaScript object.

BAPRHEEL], fAfl—1 JavaScript X%,

Each of these data storage locations has a particular cost associated with reading and writing operations
involving the data. In most cases, the performance difference between accessing information from a literal value
versus a local variable is trivial. Accessing information from array items and object members is more expensive,
though exactly which is more expensive depends heavily on the browser. Figure 2-1 shows the relative speed of

accessing 200,000 values from each of these four locations in various browsers.

R AL E A R AR E RS AR . R HEIL T, XN EREAN AR R AR U
IR BE 22 R B AN B I o U) B I SRk A A 2 — 28, ks 2 b, AROKFEE BT
Wase B 2-1 8o TARSE S, 2 A& D AR R BEAT 200000 YR ERAE BT AT 18] o

Older browsers using more traditional JavaScript engines, such as Firefox 3, Internet Explorer, and Safari 3.2,
show a much larger amount of time taken to access values versus browsers that use optimizing JavaScript engines.
The general trends, however, remain the same across all browsers: literal value and local variable access tend to
be faster than array item and object member access. The one exception, Firefox 3, optimized array item access to
be much faster. Even so, the general advice is to use literal values and local variables whenever possible and limit
use of array items and object members where speed of execution is a concern. To that end, there are several

patterns to look for, avoid, and optimize in your code.

22— L) YO 15 AL 4210 JavaScript 51%, U1 Firefox 3, Internet Explorer £ Safari 3.2, ‘EATHALAL)5
[¥) JavaScript 5| BEFEDR R Z IR BARSR UL, P SR 0 A B U) 8 B DR A IR A 5 18 A P
W RIS, Firefox 3, MRALEEAIIRVE M T LAAE R Do BRAEQIME, —MAEEBOR, WEe0

TR, AR AR R AR R, REIEA RN R G R . A, AL EE
G AR A o

=

Tirme (s per 200,000 ready
B 2 &5 8 8 2 B 2

=
L

@w@@*ﬁfﬁf@@ =4

| 3 tteral [Local variabde [Ay item [Object member |

Figure 2-1. Time per 200,000 reads from various data locations

Kl 2-1 XANFEIBHEZSRIHEAT 200000 YL AE BT B]

Managing Scope ‘& B /ER 1,

The concept of scope is key to understanding JavaScript not just from a performance perspective, but also
from a functional perspective. Scope has many effects in JavaScript, from determining what variables a function
can access to assigning the value of this. There are also performance considerations when dealing with JavaScript

scopes, but to understand how speed relates to scope, it's necessary to understand exactly how scope works.

A FHISNE 2 2 B A% JavaScript FIOCHE, AMUNPEERERI AL, T HMAIIRER M. /B0 JavaScript A
VFZ 52, A EMR LAY B aT LAY R U7 M), 26/ 5E this {H. JavaScript {/E 8¢ A BITERE, (H 2 EEH
fRIEE SERBRCR, BB MR A TR R,

Scope Chains and Identifier Resolution 1FFBEERR IR R AEAT

Every function in JavaScript is represented as an object—more specifically, as an instance of Function.
Function objects have properties just like any other object, and these include both the properties that you can
access programmatically and a series of internal properties that are used by the JavaScript engine but are not

accessible through code. One of these properties is [[Scope]], as defined by ECMA-262, Third Edition.

£ —> JavaScript BREEI R AR H . B0, TR DNBREEES . BB I HARX S ABEE,
WA RAT LUmAE DT R B I, A — RBIANREFE U7 1], (A JavaScript 51 24F AR &8 @ k. Hdr—A
&R JE P J2[[Scope]], H ECMA-262 ¥R =i E o

The internal [[Scope]] property contains a collection of objects representing the scope in which the function
was created. This collection is called the function's scope chain and it determines the data that a function can
access. Each object in the function's scope chain is called a variable object, and each of these contains entries for
variables in the form of key-value pairs. When a function is created, its scope chain is populated with objects
representing the data that is accessible in the scope in which the function was created. For example, consider the

following global function:

PEB[[Scope] B TEEL & — ek Hoik U AR AR PO B A & o AR SRR eR B4 S, B e
DR 4 T i eR T 1R o R A TSR o OB A X S ROl — S AT AR 5, A AT A B DL

WA S DR BRI R, R EEERETE DI G, I SR G I of B A 358 T)
It . B R TR A 4 e el £

function add(numl, num?2){
var sum = numl + num?2;

return sum;

-

When the add() function is created, its scope chain is populated with a single variable object: the global object
representing all of the variables that are globally defined. This global object contains entries for window,
navigator, and document, to name a few. Figure 2-2 shows this relationship (note the global object in this figure

shows only a few of the global variables as an example; there are many others).

i addOpAEENE A, BRI EEE A N AR AT A 5, AR SR 7T ARV FE
A, e RNZUEHENE D WSSO Z TR L. K 22 SR ENIZ MR R EE:
VR A R 4 R AR R AR R), AR IR) .

Glpbal object

Figure 2-2. Scope chain for the add() function

P 2-2 add()Bf B4 FH e et

The add function's scope chain is later used when the function is executed. Suppose that the following code is

executed:

add BREHIE RN S EIs AT I 2. BREs 4T I A0S
var total = add(5, 10);

Executing the add function triggers the creation of an internal object called an execution context. An exe

context defines the environment in which a function is being executed. Each execution context is unique to one
particular execution of the function, and so multiple calls to the same function result in multiple execution

contexts being created. The execution context is destroyed once the function has been completely executed.

BT add BRI AN — NI S, BRAEBITIH L TS0 —ANBIT I LR SGE X T — AR BB AT I
FIRE . SRR IRIEITT 5, SANBITH T SRR —, BTl A R —A R & S8 R
BEEEITI L TS SR BT, BT L SO A 5

An execution context has its own scope chain that is used for identifier resolution. When the execution context
is created, its scope chain is initialized with the objects contained in the executing function's [[Scope]] property.
These values are copied over into the execution context scope chain in the order in which they appear in the
function. Once this is complete, a new object called the activation object is created for the execution context. The
activation object acts as the variable object for this execution and contains entries for all local variables, named
arguments, the arguments collection, and this. This object is then pushed to the front of the scope chain. When the
execution context is destroyed, so is the activation object. Figure 2-3 shows the execution context and its scope

chain for the previous example code.

—MNEATH B SCHE B SRR, I TARIRAT . s T BT SO BRI, A A B
ath, IERBEAT R EI[[Scope] IR PEA Br 6 & HXS o IXLLEZ e T BLE s R U, BRI 2
IBATH B SR R o SRIUTAR — BSER, MR FaE X B RORT N S s AT) R SC Bl
I 1o MERE X GAT s BHAT I — AT A &, WEWTHT AR E, mAS i, ZH&EE, N this
WHE . RJE, MO RPAENE T EEER AT R SO, e el — . 2-3 fon
1A T SEBACRS B A IR A T H B SONVE B4 g .

e

the | window

arquents| 15,10
num 5
var Total = add{5, 10}, [n [/

execution context swm | undefined
Glodnal object

this | window

document | (object)

add | (function}

tofal | uedefined

Figure 2-3. Scope chain while executing add()

K] 2-3 iz4T add()iR FE4E A de

Each time a variable is encountered during the function's execution, the process of identifier resolution takes
place to determine where to retrieve or store the data. During this process, the execution context's scope chain is
searched for an identifier with the same name. The search begins at the front of the scope chain, in the execution
function's activation object. If found, the variable with the specified identifier is used; if not, the search continues
on to the next object in the scope chain. This process continues until either the identifier is found or there are no
more variable objects to search, in which case the identifier is deemed to be undefined. The same approach is
taken for each identifier found during the function execution, so in the previous example, this would happen for

sum, numl, and num?2. It is this search process that affects performance.

FERRECEA TR T, BB — AR, ARIRAFR AR 2 g IR B AT B A Kt . I iR R
AR SR S, ERF A O IRTT o 13 AR MIs AT s B H s A TR R A T 46 .
RIRB T, WA R BATREARIRAT 0ACE; W REARE], R TIPSR T — X4
I AP EzAT, BRI RS, SERAEEZ RN R THER, KRG TR PR BOA A e R E
S PAEOEAT IR ARIRAT A e I R R AR, AT B, s) sum, numl, num2
A AR R . E R A R R R 1 Re.

Identifier Resolution Performance FRiRFHRIMEEE

Identifier resolution isn't free, as in fact no computer operation really is without some sort of performance
overhead. The deeper into the execution context's scope chain an identifier exists, the slower it is to access for
both reads and writes. Consequently, local variables are always the fastest to access inside of a function, whereas
global variables will generally be the slowest (optimizing JavaScript engines are capable of tuning this in certain
situations). Keep in mind that global variables always exist in the last variable object of the execution context's
scope chain, so they are always the furthest away to resolve. Figures 2-4 and 2-5 show the speed of identifier

resolution based on their depth in the scope chain. A depth of 1 indicates a local variable.

FRIRFFURORAN I G 92 1), sk BB ARl FL I AT LA AR PR RETT B« AR A T3] SO T ek
—ARRAT BT AL AL BRI SRR, BTEL, s R R AR R R Uy R R R R TR, T4
JRAR R R R R 1 (LALI) JavaScript 51 BEEREEAHOL N W ISR IZMREL) o i iIcfE, 2REERE
AT BT SO TR R B m — MR, B LS R R A RE Al i 18] 2-4 N1 2-5 B AR ATEEE B

ANFERRBEPRRAF B, R 1 Ron— MR &,

Time {ms) per 200,000 writes
g

Identifier depth

«m Fipefon 3 «m Internet Explorer §
=8~ Firefon 3.5 (Opera .64

= (hrome 1 == Opera 10 Beta
=a= (hiome 2 L)

~s~ [ntemet Explorer 7 —o- Salan 4

Figure 2-4. Identifier resolution for write operations

Kl 2-4 SERAERIPRIRAT IR T

Time (s} per 200,000 reads
55

-r--u-..—.“.-....4-.-;-|--.----------.

m-‘ ..ll'."--'-'-.
0 A F'--". = = 4 i i
-_F._‘i‘!ll!l--IF-+------l---.---l--!--l'--!l--l--l.
n * L - L - L - L - 1
1 i i 4 3 L
Identifier depth
=@ Firefon 3 =@« [ntermet Exploter
=& Firefou 3.5 Opera 964
=o- (hrome 1 =a= (pera 10 Beta
==~ (hrome 2 —o— Salari 1.2
=~ Intemet Exploser 7 s Safari4

Figure 2-5. Identifier resolution for read operations

Bl 2-5 DERARRARRAT IR TR

The general trend across all browsers is that the deeper into the scope chain an identifier exists, the slower it
will be read from or written to. Browsers with optimizing JavaScript engines, such as Chrome and Safari 4, don't
have this sort of performance penalty for accessing out-of-scope identifiers, whereas Internet Explorer, Safari 3.2,
and others show a more drastic effect. It's worth noting that earlier browsers, such as Internet Explorer 6 and
Firefox 2, had incredibly steep slopes and would not even appear within the bounds of this graph at the high point

if their data had been included.

B, TR R, MR IRFT AL B R, S R g . RO
JavaScript 5| ZE 00 Ya3%, W Safari 4, U5 kAR RT3 A IX FRIEBER 2, T Internet Explorer, Safari 3.2,
R A 0] Sa 2 WA B KR R (AR A2, B0 Y45 41 Internet Explorer 6 A Firefox 2, A4 A

SELLEAS BRI RIE, W RIE B S E TR EE, dhek m n Ok) B RG .

Given this information, it's advisable to use local variables whenever possible to improve performance in
browsers without optimizing JavaScript engines. A good rule of thumb is to always store out-of-scope valuc

local variables if they are used more than once within a function. Consider the following example:

Wi LA EAE S, FEBCAIUL JavaScript FIZEMNI i as o, SRR TTBAE T BB R . — M2 REN
g MR EAAEAMEH Z SRR, W ENIFE R B h I 2 T —k. 5 NI T

function initUI() {

var bd = document.body,

links = document.getElementsByTagName r("a"),

i=0,

len = links.length;

while(i < len){
update(links[i++]);

H

document.getElementByld("go-btn").onclick = function(){
start();

s

bd.className = "active";

This function contains three references to document, which is a global object. The search for this variable
must go all the way through the scope chain before finally being resolved in the global variable object. You can
mitigate the performance impact of repeated global variable access by first storing the reference in a local variable

and then using the local variable instead of the global. For example, the previous code can be rewritten as follows:

LR E A =X document 51 A, document f&— N2 E% 5. R E, V2008 T FEME R HEE,
HEREEERZENGFREE . IR Ol XM s R 4R 215 O ERER S B e
2 FRENG HAME RS ET, REHEHENEHL SR E. fla, EmieiEaTblE
Hank:

function initUI(){
var doc = document,
bd = doc.body,

links = doc.getElementsByTagName r("a"),

i=0,

len = links.length;

while(i < len){
update(links[i++]);

H

doc.getElementBylId("go-btn").onclick = function() {
start();

¥

bd.className = "active";

-

The updated version of initUI() first stores a reference to document in the local doc variable. Instead of
accessing a global variables three times, that number is cut down to one. Accessing doc instead of document is
faster because it's a local variable. Of course, this simplistic function won't show a huge performance
improvement, because it's not doing that much, but imagine larger functions with dozens of global variables being

accessed repeatedly; that is where the more impressive performance improvements will be found.

initUTO) I HTHR A B 554 document [51 H AN BT AE & doc F. TREEVT 2R ERIREOE 1 IR, A
#& 3 . H doc &K document B, KT R —NREIALE. DR, KPR REAS BN H BRI
e, BUOAEEMIRA, AdrTblES T, WL+ NMeREERKEVN, Batbaeith Eeh £
2ZH A

Scope Chain Augmentation (7 4EFH 1 EE

Generally speaking, an execution context's scope chain doesn't change. There are, however, two statements

that temporarily augment the execution context's scope chain while it is being executed. The first of these is with.

—RCRUL, N AT TR ORI BE A S i . (B, AT I RRA IR LIRS AT I I N 2 AR ie AT
BTN SR RS A2 with RiEF.

The with statement is used to create variables for all of an object's properties. This mimics other languages
with similar features and is usually seen as a convenience to avoid writing the same code repeatedly. The initUI()

function can be written as the following:

with k30 BT 3 SRR — AR RE A, 70T 3 b, U Th E B PSR 4 105 — i
RN, initU10) % 0T LUE S s TR

function initUI() {
with (document){ //avoid!

var bd = body,

links = getElementsByTagName r("a"),

i=0,

len = links.length;

while(i <len){
update(links[it++]);

§

getElementByld("go-btn").onclick = function(){
start();

s

bd.className = "active";

This rewritten version of initUI() uses a with statement to avoid writing document elsewhere. Though this may

seem more efficient, it actually creates a performance problem.

WHE SR initUIORAE H T —4> with Ri&, BEAZ KT E “document”. IXFEKMCFEHRE, M
SERR EH=AE T —AN R fE) 3

When code execution flows into a with statement, the execution context's scope chain is temporarily

augmented. A new variable object is created containing all of the properties of the specified object. That obj

then pushed to the front of the scope chain, meaning that all of the function's local variables are now in the second

scope chain object and are therefore more expensive to access (see Figure 2-6).

HACHEIRAAT B> with RN, 32847) LN SO I BBE R IR N 2422 17— SR A AT AR Bk 4
G, EUERENEK AR, MG EE A S AR TR, B I s B BT AT R R AR A
PAENT A S, BrLLr RO m 1 (S 2-6) o

inktlii)
execution ontext

| Sopectuin | o

atd { e tican)
total undefined

Figure 2-6. Augmented scope chain in a with statement

B 2-6 with ik o A4 FH dE

By passing the document object into the with statement, a new variable object containing all of the document
object's properties is pushed to the front of the scope chain. This makes it very fast to access document properties
but slower to access the local variables such as bd. For this reason, it's best to avoid using the with statement. As
shown previously, it's just as easy to store document in a local variable and get the performance improveme

way.

T4 document X B with Tk, — MY ETEM R A0 T document W4 HIFFATRTE, BEHA
S BB T . (555 1] document (KR HESERE B, (FLZ Y I R8RSR RE AR T, 1% bd 48
Bt EBECEANER, BT with F5R . EURTEREIR, R E L document FERETE A
SRR, TR RS LT

The with statement isn't the only part of JavaScript that artificially augments the execution context's scope
chain; the catch clause of the try-catch statement has the same effect. When an error occurs in the try block,
execution automatically flows to the catch and the exception object is pushed into a variable object that is then
placed at the front of the scope chain. Inside of the catch block, all variables local to the function are now in the

second scope chain object. For example:

7t JavaScript A HUJE with FIEXA A A AT B B SCHIE I, try-catch SRIE L) catch 5]
HAMRR . 4 try SRR, BRFREE A catch B, JFH 575 A AR FTE3E AT ik —
ARG 7E catch RHY, bR BRI BT R0 AR B IR A TECTE 58 — AR T S . gl

try {

methodThatMightCauseAnError();
} catch (ex){

alert(ex.message); //scope chain is augmented here

-

Note that as soon as the catch clause is finished executing, the scope chain returns to its previous state.

HER, R catch THIATSE R, MF ATBE ol S iz 0] 1) Jr ok HPIR 2

The try-catch statement is very useful when applied appropriately, and so it doesn't make sense to suggest
complete avoidance. If you do plan on using a try-catch, make sure that you understand the likelihood of error. A
try-catch should never be used as the solution to a JavaScript error. If you know an error will occur frequently,

then that indicates a problem with the code itself that should be fixed.

W RAT A M, try-catch KA A2 IEFE A HIRER], FrUAEINGE B WERAR TR A — try-catch
BEA], IEHIRR T AT RE R AR, — try-catch 1B H] AN 1ZAE A JavaScript B iR ER ML QR AR
FE — MRS A, TR 28 E AR A B 1)] L,

You can minimize the performance impact of the catch clause by executing as little code as necessary within it.

A good pattern is to have a method for handling errors that the catch clause can delegate to, as in this example:

PRAT LGB IR 44 U K M B M catch T AIRPERERIREN . — MREFIIRR AR R A RS 48 — T e
HORALIE . 7.

try {

methodThatMightCauseAnError();
} catch (ex){

handleError(ex); //delegate to handler method

-

Here a handleError() method is the only code that is executed in the catch clause. This method is free to
handle the error in an appropriate way and is passed the exception object generated from the error. Since there is
just one statement executed and no local variables accessed, the temporary scope chain augmentation does not

affect the performance of the code.

handleError()i £/ catch ¥ H)Hia 4T HME— U IRRELLIE 2 705 B e AR, RO i iR
ERFENR . TR &, WAREARET R, AR AR N A A S m A PR RE .

Dynamic Scopes Zh7&AE 8

Both the with statement and the catch clause of a try-catch statement, as well as a function containing (), are
all considered to be dynamic scopes. A dynamic scope is one that exists only through execution of code and

therefore cannot be determined simply by static analysis (looking at the code structure). For example:

T with FIE LA try-catch FRIEF catch FA), LLEREEOMBREL #BAN R S/EHE. —
AV R PSRBT AR, R s (EENELEW) ki e & AEs):
B . #il.

function execute(code) {
(code);
function subroutine(){
return window;
5
var w = subroutine();

//what value 1s w?

55

The execute() function represents a dynamic scope due to the use of (). The value of w can change based on the

value of code. In most cases, w will be equal to the global window object, but consider the following:

executeVBRHCE EEB— I SEREL BEOAEMHT(). wZEIMES code HK. RELENT, w
BN T 2RI window X5, {HA2IEH W M EM:

execute("var window = {};")

In this case, () creates a local window variable in execute(), so w ends up equal to the local window instead of
the global. There is no way to know if this is the case until the code is executed, which means the value of the

window identifier cannot be predetermined.

EHMIEMT, OFF executeORAZHAIE T —ANFHE window 22 8. FTLL w 2540 T XA 58 window 48
BMAREFRIBA . FTLLE, NSITIZBARVE R E 10 T RSB, AT window PR & X
ANBETRACHSE o

Optimizing JavaScript engines such as Safari's Nitro try to speed up identifier resolution by analyzing the code
to determine which variables should be accessible at any given time. These engines try to avoid the traditional
scope chain lookup by indexing identifiers for faster resolution. When a dynamic scope is involved, however, this
optimization is no longer valid. The engines need to switch back to a slower hash-based approach for identifier

resolution that more closely mirrors traditional scope chain lookup.

HALI) JavaScript 5158, 40 Safari [Nitro 512, AL T 70 M AU R A 52 WIRLE A2 B N AZAE AR TR I %1
BTl RINPRAR AT IR R . XL 5 B A E T AR S0 A 4K, B LIRS IR 2 5 1) U T B
WA, WA ESE R, RACERANEIE 1. 518/ 2 0I5 T 0575 R AR IRAT
WS, EBALGIIAE EEEE R

For this reason, it's recommended to use dynamic scopes only when absolutely necessary.

ER AR, RAEZ0 20 B A HERE A8) 24

Closures, Scope, and Memory &, {EfEL, fNTF

Closures are one of the most powerful aspects of JavaScript, allowing a function to access data that is outside
of its local scope. The use of closures has been popularized through the writings of Douglas Crockford and is now
ubiquitous in most complex web applications. There is, however, a performance impact associated with using

closures.

P2 JavaScript S K — N7 0, & A VFER 2005) SRRV B 2 A s . PR)8 A RIS Douglas
Crockford [FJEAEATE K, U5 MERE RN N H B AN A, kg 5 mafaK.

To understand the performance issues with closures, consider the following:

N TS HEARMPERERE, 58T i) 1

function assignEvents(){
var id = "xdi9592";
document.getElementByld("save-btn").onclick = function(event) {

saveDocument(id);

-

The assignEvents() function assigns an event handler to a single DOM element. This event handler is a closure,
as it is created when the assignEvents() is executed and can access the id variable from the containing scope

order for this closure to access id, a specific scope chain must be created.

assignEvents() BN —1~ DOM Je &5 T — ML B A, R a e — M4, 4
assignEvents(WATIN G, v LAV R HYE [A0 id A &E. HIXFOEE X id AR Urn], Sl
—MREE B A A

When assignEvents() is executed, an activation object is created that contains, among other things, the id
variable. This becomes the first object in the execution context's scope chain, with the global object coming
second. When the closure is created, its [[Scope]] property is initialized with both of these objects (see Figure

2-7).

2 assignEventsO#ATIN, — PEUEXIRALIE, FFOE T NGRS, HPafidZE. el
BCAIEAT I BT SO AEREE RS — 5, R EES A MBI, [[Scope] @t LR LT
FEpIER (LK 2-7) .

assignEvents() | Scape cha Activation object
enecution context this wiikkaw
Sopecion | &~ : i

Figure 2-7. Scope chains of the assignEvents() execution context and closure
Kl 2-7 assignEvents()Iz AT HA b ST S80S A0 P

Since the closure's [[Scope]] property contains references to the same objects as the execution context's scope
chain, there is a side effect. Typically, a function's activation object is destroyed when the execution context is
destroyed. When there's a closure involved, though, the activation object isn't destroyed, because a reference still
exists in the closure's [[Scope]] property. This means that closures require more memory overhead in a scrif

a nonclosure function. In large web applications, this might become a problem, especially where Internet Ex

is concerned. IE implements DOM objects as nonnative JavaScript objects, and as such, closures can cause

memory leaks (see Chapter 3 for more information).

Hi T I [[Scope] VB ML & 54T LN SUE A RIS S5 1 H, 7= AmER . %, — N
BB R 5B T RS0 R 49 R, B SR A S T, O S R A T 1A
B [Scope] VB TE . IXRIRAE AT AE S AR ERELL, FEEZ NI 7R TN H b,
IX AT BE AN B, JULLALE Internet Explorer H1 5 47 5G7F . 1E i F JEAHE JavaScript X4 SZ0E DOM X%, 4]

B SHEN AR (E2EESAH3E) .

When the closure is executed, an execution context is created whose scope chain is initialized with the same
two scope chain objects referenced in [[Scope]], and then a new activation object is created for the closure itself

(see Figure 2-8).

AT, —NaATHE R SO g, e RE RS [[Scope] 17 51T P A4 R RO A i
RN B RIERLE, RIE—HEE S SO B B S bl (S 1E 2-8) .

Activation object (closare)

thes wirkhow
agquments |
event {object) |
execition context this windaw
arguments Il
= i “ud9592°

Global object

il
5.

Figure 2-8. Executing the closure

K 2-8 FfuIsAT

Note that both identifiers used in the closure, id and saveDocument, exist past the first object in the scope
chain. This is the primary performance concern with closures: you're often accessing a lot of out-of-scope

identifiers and therefore are incurring a performance penalty with each access.

FEMA R RBPEPRREF, id #1 saveDocument, AfE TAEFABAESE X EZ EHMVE L, B2

PR B PR BEOGHE A AR W U7 IA) — VB [Z AMIIAR IRAT, BRR VT 1) #0580 — L2 PR RE AL K

It's best to exercise caution when using closures in your scripts, as they have both memory and execution
speed concerns. However, you can mitigate the execution speed impact by following the advice from earlier in
this chapter regarding out-of-scope variables: store any frequently used out-of-scope variables in local variables,

and then access the local variables directly.

FERIAS Fp g e /AT T PR, AE A TR A o0 . B2, ART LB A= R ITe i i
KT AM S E R AR, AT R K S ME RN RIS R, Ra BRI R

Object Members X557

Most JavaScript is written in an object-oriented manner, either through the creation of custom objects or the
use of built-in objects such as those in the Document Object Model (DOM) and Browser Object Model (BOM).

As such, there tends to be a lot of object member access.

K24 JavaScript AU LLRTE N S AL S . OB G A2 N RIS W E RS, s
PAXT GBI (DOMD FIREARAT AR (BOM) 2P %. B, FETER 2 G v il o

Object members are both properties and methods, and there is little difference between the two in JavaScript.
A named member of an object may contain any data type. Since functions are represented as objects, a member
may contain a function in addition to the more traditional data types. When a named member references a function,

it's considered a method, whereas a member referencing a nonfunction data type is considered a property.

KRB A S BRI 5%, 7E JavaScript F, FHZHIE M. XRK AN 4 B T AR S AR i
o BESRRR B — Rl 5, AN REARREGEIRRAS, MBS — PR, S ad)
AT =R, ERRAE IR TR R R R A B W R A J

As discussed earlier in this chapter, object member access tends to be slower than accessing data in literals or
variables, and in some browsers slower than accessing array items. To understand why this is the case, it's

necessary to understand the nature of objects in JavaScript.

IEMARSE AT AT 0, X GO 3 L H A Em A B0 T, 7R b s b e i B g
TG . EHBHTRIRE, L E P JavaScript T ST

Prototypes &I

Objects in JavaScript are based on prototypes. A prototype is an object that serves as the base of another
object, defining and implementing members that a new object must have. This is a completely different concept
than the traditional object-oriented programming concept of classes, which define the process for creating a new
object. Prototype objects are shared amongst all instances of a given object type, and so all instances also share

the prototype object's members.

JavaScript XSGR R T IR LI S5 AR SR AOFEAS, 58 SOFSEBL T —SFe S B b 20U 5 AT 1) Al
o B—METE AR TR H F AR AWE T IS, BEN TN RS, RSSO
e e RN R SLBI T, B SEB 362 S RS S R A 4

Sm

An object is tied to its prototype by an internal property. Firefox, Safari, and Chrome expose this property to
developers as _ proto_; other browsers do not allow script access to this property. Any time you create a new
instance of a built-in type, such as Object or Array, these instances automatically have an instance of Object as

their prototype.

— IR ARG B e R . Firefox, Safari, 1 Chrome [f]HF & A AT OX — @, i
YE__proto__: HABN bEAF A SRVF AT M IZ — @tk AEATI AR ENE — > P B2 RISER], 40 Object 5L
Array, JXEESLH] HEHIA A Object /F 4 BRI .

Consequently, objects can have two types of members: instance members (also called "own" members) and
prototype members. Instance members exist directly on the object instance itself, whereas prototype members are

inherited from the object prototype. Consider the following example:

R, XTI PR BB R 03 SEBI R AR E own i) FNRTE RO o Sk 0 ELFRAFEAE T
S 5, TR TE R AT G R T4k Ak . 5 RET)
var book = {
title: "High Performance JavaScript",
publisher: "Yahoo! Press"

¥

alert(book.toString()); /"[object Object]"

In this code, the book object has two instance members: title and publisher. Note that there is no definition for
the method toString() but that the method is called and behaves appropriately without throwing an error. The

toString() method is a prototype member that the book object is inheriting. Figure 2-9 shows this relationship.

AL, book A A PINSELWIRL G - title A1 publisher. 72T 3% A 7€ X toString()#% 1, [HZIXA
B T, AR . toString) PR EUH 2 — 4 book XS4k AR K Gt Bl 2-9 Bon BT
Z IR R

Cpowo_ |l

! ah :{HT
@ﬁq

Figure 2-9. Relationship between an instance and prototype

#2-9 SEFIERIERSCHR

The process of resolving an object member is very similar to resolving a variable. When book.toString() is
called, the search for a member named "toString" begins on the object instance. Since book doesn't have a
member named toString, the search then flows to the prototype object, where the toString() method is found and

executed. In this way, book has access to every property or method on its prototype.

ARG Rk i R 5 AR B A4 L. 2 book.toString VB I, X Al R EAT 42 4 “toString” [43
R, TN ESLE IR, W book ¥ A % M toString FIE L, IAMEEMAE RGNS, EIME R T
toString() 7 iEFHHATE . HEITXF 775, booke A LLVS] 'E M R AT A A BB 7 v

You can determine whether an object has an instance member with a given name by using the
hasOwnProperty() method and passing in the name of the member. To determine whether an object has access to

a property with a given name, you can use the in operator. For example:

PRAT LA hasOwnProperty() 8 £0if E — N G2 S RARHE LRI SEBI R A, CERIZEEUZ A A
MR o EWEN SRS RATE AR EYE, AR DU ERAEAT in. Bilhn.

var book = {
title: "High Performance JavaScript",
publisher: "Yahoo! Press"
s
alert(book.hasOwnProperty("title")); //true
alert(book.hasOwnProperty("toString")); //false

alert("title" in book); //true

alert("toString" in book); //true

In this code, hasOwnProperty() returns true when "title" is passed in because title is an object instance; the
method returns false when "toString" is passed in because it doesn't exist on the instance. When each property

name is used with the in operator, the result is true both times because it searches the instance and prototype.

AL, hasOwnProperty() & A “title i 3% [B] true, K4 title F& — NS4 i 71 « £ A “toString” i 32 [F] false,
KA toString ANFESEF 2 H e ST in BAERT A PSS @ YE, B4R [BIERE true, RN & REHE R L4
NHRIFIE .

Prototype Chains JRTEHE

The prototype of an object determines the type or types of which it is an instance. By default, all objects are
instances of Object and inherit all of the basic methods, such as toString(). You can create a prototype of another

type by defining and using a constructor. For example:

XGRS RIE T LB BOATEIL T, BT X R AUE Object BISEHY, JFAkA I BT 245
%, 0 toString(). PRET LA “Rig s BUEE 53 A — MR IR . il

function Book(title, publisher){
this.title = title;
this.publisher = publisher;
H
Book.prototype.sayTitle = function() {
alert(this.title);
s
var book1 = new Book("High Performance JavaScript", "Yahoo! Press");
var book2 = new Book("JavaScript: The Good Parts", "Yahoo! Press");
alert(book! instanceof Book); //true
alert(book1 instanceof Object); //true
bookl.sayTitle(); /"High Performance JavaScript"

alert(book1.toString()); //"[object Object]"

The Book constructor is used to create a new instance of Book. The book1 instance's prototype (__proto) is
Book.prototype, and Book.prototype's prototype is Object. This creates a prototype chain from which both book1

and book?2 inherit their members. Figure 2-10 shows this relationship.

Book 41 #5 FH TG — 4> F1#) Book 554 . book1 [JJRJE (_ proto_) & Book.prototype, Book.prototype
HIJR A Object. XA T— N EHEE, bookl Al book2 #kA T AT R . K 2-10 TR HIXFC AR,

. Book.prototype prototype

poain

HHEHEH!

| papertylsEnumesable
vaef

Figure 2-10. Prototype chains

K 2-10 Jq 4k

Note that both instances of Book share the same prototype chain. Each instance has its own title and publisher
properties, but everything else is inherited through prototypes. Now when book1.toString() is called, the search
must go deeper into the prototype chain to resolve the object member "toString". As you might suspect, the deeper
into the prototype chain that a member exists, the slower it is to retrieve. Figure 2-11 shows the relationship

between member depth in the prototype and time to access the member.

TR P Book SEFIFLTE Al — MR EEE. RFASEBIFNAT H QI title A1 publisher JE I, (AR 53 344k
ABRE . 2 bookl.toString V4 I, &R TARLIURN R ILHEA BEFR 2N B 7 “toString”. IEWIRAT
MEBERIIBAE, RN R TEEERR, MR SR . K 2-11 SR a5 7e Jg R FEdh T ab B B2 5 15) I
AR AR o

350 4

W00 4

250 4

200

150 4

Tirme (ms) per 200, 000 reads

100 4

50 4

%‘? Qf?_g?}éé‘
@‘"@ﬁ“"wi@ﬁ

||:|;In~:lance W Prototype [D2nd prototype I.lrdpmlulm|

Figure 2-11. Data access going deeper into the prototype chain
B 2-11 BE U R A R B HE

Although newer browsers with optimizing JavaScript engines perform this task well, older
browsers—especially Internet Explorer and Firefox 3.5—incur a performance penalty with each additional step
into the prototype chain. Keep in mind that the process of looking up an instance member is still more expensive

than accessing data from a literal or a local variable, so adding more overhead to traverse the prototype chain just

amplifies this effect.

BARAEHALAL JavaScript 518 BGFT WA EILAE 25 PRI R L, (2 ZHIW B34%, Rr%2 Internet
Explorer # Firefox 3.5, SANJGRIEHE—BAASHINMERERI K. ok, HRLEIR RS R I B
B REL AR B A AHE TR, A ARG bk) IR BE R TS IR L BOR T IX R RUR

Nested Members HRZER R

Since object members may contain other members, it's not uncommon to see patterns such as
window .location.href in JavaScript code. These nested members cause the JavaScript engine to go through the

object member resolution process each time a dot is encountered. Figure 2-12 shows the relationship between

object member depth and time to access.

X% A R TR & He A, B AN KR IR 512 window . location. href iX AR5 . B R — 5,

JavaScript 5| B EAER R B EPAT TR . 1B 2-12 SR HYON SR R S U] IR SR AR

250 -
m.

g 10

2

£

..E. 100 4

£ —
5ih 4 .rr-'---oqt-i#-l-.“'"'"""“.".--..-'-‘
] - S — — ——— o —— — — .

1 1 3 1
Property depth

=o Firetox 3 == [temit byploer 8
Teefor 1.5 =a— (pen 5064

== (hraree 1 «i = (pera 10 feta

== (hrome 1 == 5afan 3.2

=&~ [nternet Explorer 7 —+— Safan 4

Figure 2-12. Access time related to property depth
B 2-12 Yyl I a] 55 SR R BE O A

It should come as no surprise, then, that the deeper the nested member, the slower the data is accessed.

Evaluating location.href is always faster than window.location.href, which is faster than

window.location.href.toString(). If these properties aren't on the object instances, then member resolution will take

longer as the prototype chain is searched at each point.

FEIEAZIBE, B RBEME, U7 E . location.href F &P T window.location.href, 1M)5 &t 9%

kt window.location.href.toString()SE . 11 FIXLLJ@ VAN BT G s Jg@ vk, AR e Z e s b
PR IFERE, 1X6 T2 AT E .

Caching Object Member Values Z2775%1 5 R FRE

With all of the performance issues related to object members, it's easy to believe that they should be avoided
whenever possible. To be more accurate, you should be careful to use object member only when necessary. For

instance, there's no reason to read the value of an object member more than once in a single function:

HI BT AT IR LR PR RE i) JL 5 0 B AT 9%, B AR AT R et e A AT e AT SERA DI, ARAY /O
h, RYERSZEOL MEMXS G . Fln, Hef BT — BT 2 R R — A 5 R R A :

function hasFitherClass(element, classNamel, className?2){

return element.className == classNamel || element.className == className2;

In this code, element.className is accessed twice. Clearly this value isn't going to change during the course of
the function, yet there are still two object member lookups performed. You can eliminate one property lookup by

storing the value in a local variable and using that instead:

FEMACESF, element.className #5057 i) 1 PR RBHE, 71X O RE HEIE R AR, (B4
IRTLE P I GRS, (RATLUSEREAAN N REACE, HEE R . B

function hasFitherClass(element, classNamel, className?2){
var currentClassName = element.className;

return currentClassName == classNamel || currentClassName == className2;

This rewritten version of the function limits the number of member lookups to one. Since both member
lookups were reading the property's value, it makes sense to read the value once and store it in a local variable.

That local variable then is much faster to access.

PEHE S A I RRA A G I R T T — R BEAR PN G A E e Jm M, BT LA AT B i Hs— O
EHAEANREAET . SRR R IRE 2

Generally speaking, if you're going to read an object property more than one time in a function, it's best to

store that property value in a local variable. The local variable can then be used in place of the property to a

the performance overhead of another property lookup. This is especially important when dealing with nested

object members that have a more dramatic effect on execution speed.

—RORUEL, WRAE R — SRR IR 2 R — I BRI, AP B R R . DURERAS
ERAURME, B RAE AR IT 8. EAC BT SR R I R, e TR RIE T
R AL s LUEAS RIS o

JavaScript namespacing, such as the technique used in YUL, is a source of frequently accessed nested

properties. For example:

JavaScript F1r & 25, W YUT BrAfFHIEOR, & U E BIERRIEL —. flan:

function toggle(element) {
if (YAHOO.util.Dom.hasClass(element, "selected")){
YAHOO.util. Dom.removeClass(element, "selected");
return false;
} else {
YAHOO.util.Dom.addClass(element, "selected");

return true;

}

This code repeats YAHOO.util.Dom three times to access three different methods. For each method there are
three member lookups, for a total of nine, making this code quite inefficient. A better approach is to store

YAHOO.util.Dom in a local variable and then access that local variable:

IS E R YAHOO. util. Dom =R ASRMF =FANRI K 1535 AN AER A =R AR e, B3
W, FEUACRDAH M. — AN ELFRIT75 2% YAHOO. util. Dom {7 75 R348 S, AR5 U) JR 3L &

function toggle(element) {
var Dom = YAHOO.util.Dom;

if (Dom.hasClass(element, "selected")){

Dom.removeClass(element, "selected");
return false;

} else {
Dom.addClass(element, "selected");

return true;

b

-

The total number of member lookups in this code has been reduced from nine to five. You should never look

up an object member more than once within a single function, unless the value may have changed.

PR AR R IREN IV B FLR o FE— R ER, AREANYAZ— ARG AT — IR R,
BRARZAE T REEAL o

Summary &%

Where you store and access data in JavaScript can have a measurable impact on the overall performance of
your code. There are four places to access data from: literal values, variables, array items, and object members.

These locations all have different performance considerations.

£ JavaScript f, HE AL E T DN BEAAVERE AR R . A DUR BRI 2R, HARE, &
=, HA, NHER. el A AR E.

« Literal values and local variables can be accessed very quickly, whereas array items and object members take

longer.
T R SR AR AR BT R AR R R, B2l IR Gl 01 7 S N]

* Local variables are faster to access than out-of-scope variables because they exist in the first variable object of
the scope chain. The further into the scope chain a variable is, the longer it takes to access. Global variables are

always the slowest to access because they are always last in the scope chain.

It AR R kAN AT R, RO e AR RS — X B ACE AR R T OB, U5 T
FIR TR . 2RARR BN, FOVENTE 20 R s — 3.

* Avoid the with statement because it augments the execution context scope chain. Also, be careful with the catch

clause of a try-catch statement because it has the same effect.

B with R, BN E SR 14T)BT SO ATEE - 1t LR 24 /X £F try-catch FIA T catch
THL BOYE RAFFERR.

* Nested object members incur significant performance impact and should be minimized.
BN R A I B R PERE R, e .

* The deeper into the prototype chain that a property or method exists, the slower it is to access.
B BT AR IR TR T AL B AR, U7 B R g .

* Generally speaking, you can improve the performance of JavaScript code by storing frequently used object
members, array items, and out-of-scope variables in local variables. You can then access the local variables faster

than the originals.

ROk, URTTELE XA VE SR JavaScript ACRSIOPERE: K2 WA IR S o1, B, AndishAg
BN ET . KA, Ui R R IR SRR R AR .

By using these strategies, you can greatly improve the perceived performance of a web application that

requires a large amount of JavaScript code.

I IR e S, AR AR KR i A0 £ TG 2K JavaScript AURE IR R4 G A A SR BE o

=% DOM Scripting DOM 48

DOM scripting is expensive, and it's a common performance bottleneck in rich web applications. This chapter

discusses the areas of DOM scripting that can have a negative effect on an application's responsiveness and

recommendations on how to improve response time. The three categories of problems discussed in the chapter

include:

Xt DOM BARA & 5%, 85 4 DU T A OB H S — MR RER . AN T wT BE X2 13 i 3 A8 67 1T 51
(X1 DOM Zf2, 4 3% M Y Jd S e AT 1 =K)l

¢ Accessing and modifying DOM elements

ViR AE 2 DOM Jo&

* Moditying the styles of DOM elements and causing repaints and reflows

Ee DOM JeR AR, M E 2R BT HERR

* Handling user interaction through DOM events

JEIE DOM i A4-Ab 38 F 7 e J3

But first—what is DOM and why is it slow?

{HESe——AT 42 DOM? fib R ft4f&?

DOM in the Browser World ¥ %25t #) DOM

The Document Object Model (DOM) is a language-independent application interface (API) for working with
XML and HTML documents. In the browser, you mostly work with HTML documents, although it's not
uncommon for web applications to retrieve XML documents and use the DOM APIs to access data from those

documents.

SR ZAEAL (DOM) A& — AL FiES R, A XML A1 HTML SCRY#ER S HFE 210 (APD .
TEN AR, EEE HTML SCRYFTACIE, 76 M TN A k2 XML ORI AR L. DOM APIs £ % T
[11) 32 46 S Y) BB

Even though the DOM is a language-independent API, in the browser the interface is implemented in
JavaScript. Since most of the work in client-side scripting has to do with the underlying document, DOM is an

important part of everyday JavaScript coding.

RYE DOM 2515 5 LR H APL (3 B04% H 2 1 A1 LA JavaSeript SEERIN o 507 3 K 22 ZUHIACTE 7
53R4T AC1E, DOM gl JavaScript £4RS H HAT 4 h 2 2240 B 47

It's common across browsers to keep DOM and JavaScript implementations independent of each other. In
Internet Explorer, for example, the JavaScript implementation is called JScript and lives in a library file called
jscript.dll, while the DOM implementation lives in another library, mshtml.dll (internally called Trident). This
separation allows other technologies and languages, such as VBScript, to benefit from the DOM and the rendering
functionality Trident has to offer. Safari uses WebKit's WebCore for DOM and rendering and has a separate
JavaScriptCore engine (dubbed SquirrelFish in its latest version). Google Chrome also uses WebCore libraries
from WebK:it for rendering pages but implements its own JavaScript engine called V8. In Firefox, Spider-Monkey
(the latest version is called TraceMonkey) is the JavaScript implementation, a separate part of the Gecko

rendering engine.

WS 2830 5 25k DOM SEELAN JavaScript SEILARFFAE BT . B4, 7F Internet Explorer Y, #F% 4 JScript
i JavaScript SEER A7 T SCAF jseript.dll /1, 17 DOM SEEAZ T 55— mshtml.dll (5485 Trident) .
XF BRI VA RN S, W VBScript, 52#i T Trident AT#24L¥) DOM ILRERTEJThBE. Safari
] WebKit [¥] WebCore 431 DOM FIiE#:, HA—A~73 1 JavaScriptCore 5% (BUFhRAF 145 2
SquirrelFish) . Google Chrome i { WebKit [¥] WebCore JFiE 4 i, {HSZIR T B 211 JavaScript 5] 2
V8. fE Firefox #, JavaScript SZIU K Spider-Monkey (g #Thit H#7/F TraceMonkey) , 5H Gecko 7E%*
ElE 2R

Inherently Slow RAFIE

What does that mean for performance? Simply having two separate pieces of functionality interfacing with
each other will always come at a cost. An excellent analogy is to think of DOM as a piece of land and JavaS

(meaning ECMAScript) as another piece of land, both connected with a toll bridge (see John Hrvatin, Micrc

MIXO09, http://videos.visitmix.com/MIX09/T53F). Every time your ECMAScript needs access to the DOM, you
have to cross this bridge and pay the performance toll fee. The more you work with the DOM, the more you pay.
So the general recommendation is to cross that bridge as few times as possible and strive to stay in ECMAScript
land. The rest of the chapter focuses on what this means exactly and where to look in order to make user

interactions faster.

K PERERIRE T AW ? WIERUISR, PINISZEE 73 DL Dy RE 2 Ll st R RE ARG . — MRIEZRI
FLIG AT DOM & i — MB35, 48 JavaScript (ECMAScript) & &5 — N El5, ## 2 18 LL— B 247
B (£ John Hrvatin, %%, MIX09, http://videos.visitmix.com/MIX09/T53F) . %k ECMAScript 77 2£1ji
i DOM Hf, fRFEEIMH, 28—k SEH7. (REA/E DOM IREu %, ARG . —BRIEBUE R ER
REMRREL, 5%)15 B AE ECMAScript 8 b ASEOR IR IS PEIRAS, SRR AT
DA i FH P A B

DOM Access and Modification DOM i] fl{& %t

Simply accessing a DOM element comes at a price—the "toll fee" discussed earlier. Modifying elements is

even more expensive because it often causes the browser to recalculate changes in the page geometry.

TETEER UG, I QAT AT i iRRE, U5 i —> DOM & B A8 — kg b 2. 1B EoTR I
FIRESE DT, DY B S 20 BT a8 0BT v B DU K J LR ARG o

Naturally, the worst case of accessing or modifying elements is when you do it in loops, and especially in

loops over HTML collections.

SR, Vi BB ST R BRI TS DU AR SRAT IR, Rl AE HTML 245 R AT A8 .

Just to give you an idea of the scale of the problems with DOM scripting, consider this simple example:

N T 4R KT DOM #AF M EALEI S, 2558 N IR BI) 1

function innerHTMLLoop() {
for (var count = 0; count < 15000; count++) {

document.getElementByld(‘here').innerHTML +='a’;

This is a function that updates the contents of a page element in a loop. The problem with this code is that for
every loop iteration, the element is accessed twice: once to read the value of the innerHTML property and once to

write it.

VbR ECAEAR A R BB DRI 2 R BRI R R, AERRRAE A TT AR AR DOM T3 PR — ik

BEHL innerHTML BYERER, 5 —IXKBAE.

A more efficient version of this function would use a local variable to store the updated contents and then

write the value only once at the end of the loop:

AN AR RS R AT R BB AR AL DR R A, R A RN — RS

function innerHTMLLoop2() {
var content =",
for (var count = 0; count < 15000; count++) {
content +='a';

}

document.getElementByld(‘'here').innerHTML += content;

This new version of the function will run much faster across all browsers. Figure 3-1 shows the results of
measuring the time improvement in different browsers. The y-axis in the figure (as with all the figures in this
chapter) shows execution time improvement, i.e., how much faster it is to use one approach versus another. In this

case, for example, using innerHTMLLoop2() is 155 times faster than innerHTMLLoop() in IE6.

TEATE WA, BFRASITEEAERG 2. B 3-1 B TAEA ERN s B & 20 E 3R, Y 5
3 o AR T, Trul, NS MR T 20, FlanTE 1E6 Y, innerHTMLLoop2()Et

innerHTMLLoop(Of T 155 £%.

3¢ 1 M

g %0
250 i
m.

F i

2 " 122

= 101

100 4 i
i (}{]4n B

LI
) 1 1] HHHF‘I

&€ ¢ $§e§ﬁﬁﬁ¢§§@§§&§&§

Figure 3-1. One benefit of staying within ECMAScript: innerHTMLLoop2() is hundreds of times faster

than innerHTMLLoop()

& 3-1 innerHTMLLoop2()tt innerHTMLLoop()t_F i 1%

As these results clearly show, the more you access the DOM, the slower your code executes. Therefore, the

general rule of thumb is this: touch the DOM lightly, and stay within ECMAScript as much as possible.

KL RN IR, {RU5W] DOM S, RIS ATHEEHUBE . Kk, —RERIENE: Bt

. DOM, FFRERFFE ECMAScript i [H P

innerHTML Versus DOM methods innerHTML 5§ DOM 5B

Over the years, there have been many discussions in the web development community over this question: is it
better to use the nonstandard but well-supported innerHTML property to update a section of a page, or is it best to
use only the pure DOM methods, such as document.createElement ()? Leaving the web standards discussion aside,
does it matter for performance? The answer is: it matters increasingly less, but still, innerHTML is faster in all

browsers except the latest WebKit-based ones (Chrome and Safari).

ZEK, TE web R FALX CEXT LR BT T 2100 R e, 8B PRI R SRR
H innerHTML J& PESE 47 0e, 1821 A48 DOM J7i%, 1 document.createElement ()3 41HE ? Wt A%)

L, CEATRIYERE T ? B R MR ERAK, (2, EHTE NN EEF, innerHTML # & 5 —uk,
T EBFTHEET WebKit 3 %#8 (Chrome F1 Safari) .

Let's examine a sample task of creating a table of 1000 rows in two ways:
IEFRATRES — M7, RIPIA TSR A —> 1000 1THIZR:
* By concatenating an HTML string and updating the DOM with innerHTML
W AgIE —~ HIML #5575, SR/5 53 DOM [#) innerHTML J& 1%
* By using only standard DOM methods such as document.createElement() and document.createTextNode()
JHEI PR DOM J77% document.createElement ()1 document.createTextNode()

Our example table has content similar to content that would have come from a Content Management System

(CMYS). The end result is shown in Figure 3-2.

FAE T HIBEANBEN DN EEH RS (CMS) 113818, HERERmE 3-2.

[| yes? name url |

action
1 And the answer s, yes miy name is £1 http:ffexample org1 html : m
2 |And the answer is... o i - o
i, my name is #2 Tt enamgle orgi2haml prorvn
f f T . — [

Figure 3-2. End result of generating an HTML table with 1,000 rows and 5 columns

K 3-2 AlEE—A 1000 4T 5 #1¥ HTML %

The code to generate the table with innerHTML is as follows:

ffH innerHTML 2R RS W1 -

173

function tablelnnerHTML() {
var 1, h = ['<table border="1" width="100%">"];
h.push('<thead>');
h.push('<tr><th>id<Vth><th>yes?<\/th><th>name<\/th><th>url<V/th><th>action<Vth><Vtr>');
h.push('<V/thead>");
h.push('<tbody>");
for (i=1;i<=1000; i++) {
h.push('<tr><td>");
h.push(i);
h.push('<Vtd><td>");
h.push('And the answer is... '+ (i % 2 ? 'yes' : 'no"));
h.push('<Vtd><td>");
h.push('my name is #' + 1);
h.push('<Vtd><td>");
h.push('http://example.org/' + i + "html<Va>'),
h.push('<Vtd><td>");
h.push('");
h.push(' edit<Va><V1i>');
h.push(' delete<\/a><\/1i>");
h.push('<\/ul>");
h.push('<\/td>");
h.push('<V/tr>");
H
h.push('<Vtbody>");
h.push('<\/table>");

document.getElementByld('here').innerHTML = h.join(");

In order to generate the same table with DOM methods alone, the code is a little more verbose:

WRATH DOM 7k [RFE I, ALK,

function tableDOM() {

var i, table, thead, tbody, tr, th, td, a, ul, li;

tbody = document.createElement (‘tbody');

for (i=1;1<=1000; i++) {
tr = document.createElement ('tr');
td = document.createElement ('td");
td.appendChild(document.createTextNode((i % 2) ? 'yes' : 'no"));
tr.appendChild(td);
td = document.createElement ('td");
td.appendChild(document.createTextNode(i));
tr.appendChild(td);
td = document.createElement ('td");
td.appendChild(document.createTextNode('my name is #' + 1));
tr.appendChild(td);
a = document.createElement ('a');
a.setAttribute(‘href, 'http://example.org/' + i + "html');
a.appendChild(document.createTextNode('http://example.org/' + i + "html'));
td = document.createElement ('td");
td.appendChild(a);
tr.appendChild(td);
ul = document.createElement (‘ul');
a = document.createElement ('a');
a.setAttribute(‘href, 'edit.php?id="+ 1);
a.appendChild(document.createTextNode('edit"));
li = document.createElement ('i');
li.appendChild(a);
ul.appendChild(li);

a = document.createElement ('a');

a.setAttribute(‘href, 'delete.php?id='+ i);
a.appendChild(document.createTextNode('delete'));
li = document.createElement ('i');
li.appendChild(a);
ul.appendChild(li);
td = document.createElement ('td");
td.appendChild(ul);
tr.appendChild(td);
tbody.appendChild(tr);
H
tr = document.createElement ('tr');
th = document.createElement ('th");
th.appendChild(document.createTextNode('yes?'));
tr.appendChild(th);
th = document.createElement ('th");
th.appendChild(document.createTextNode('id"));
tr.appendChild(th);
th = document.createElement ('th");
th.appendChild(document.createTextNode('name'));
tr.appendChild(th);
th = document.createElement('th");
th.appendChild(document.createTextNode('url'));
tr.appendChild(th);
th = document.createElement('th");
th.appendChild(document.createTextNode(‘action'));
tr.appendChild(th);
thead = document.createElement('thead');
thead.appendChild(tr);
table = document.createElement(‘table');

table.setAttribute('border’, 1);

table.setAttribute('width', '100%');
table.appendChild(thead);
table.appendChild(tbody);

document.getElementByld('here').appendChild(table);

55

The results of generating the HTML table using innerHTML as compared to using pure DOM methods are
shown in Figure 3-3. The benefits of innerHTML are more obvious in older browser versions (innerHTML is 3.6
times faster in [E6), but the benefits are less pronounced in newer versions. And in newer WebKit-based browsers
it's the opposite: using DOM methods is slightly faster. So the decision about which approach to take will depend

on the browsers your users are commonly using, as well as your coding preferences.

1§ innerHTML 14l DOM J5v£ G HTML 31 Hef5 45 1 2 0LE] 3-3. innerHTML)b 7E 32 20 B
& BRI S N (78 IE6 H innerHTML X F4R 3.6 f85) o (AAEHThA M W28 Bt AIB A B8 T o Mi7esoh
(1% T WebKit o Sias FHAS R IEAFHI: {HF DOM Jrikm b, Ak, e R AR 2 Bk T
ST AR IR S, LR AR S D R Ao

40 1
354
10 1
15 1

362

1.75x 1.6y

L 1 17 ,M L 119
10
05 -

0

=05 -

=1.0
_]‘5 1 . _!]1; _1 1&

%—“IQ Qﬂqﬁ' '5'5‘ ﬂ'ﬁ@ﬁ@#@‘

Tirmes faster

Figure 3-3. The benefit of using innerHTML over DOM methods to create a 1,000-row table;

innerHTML is more than three times faster in IE6 and slightly slower in the latest WebKit browsers

K] 3-3 {fi[] innerHTML 1 DOM 77 yE 613 —4 1000 TR
7E IE6 #, innerHTML LX) FH =145, (HIEBCHIIEE T WebKit 130 8% 181X F

Using innerHTML will give you faster execution in most browsers in performance-critical operations that
require updating a large part of the HTML page. But for most everyday cases there isn't a big difference, and so
you should consider readability, maintenance, team preferences, and coding conventions when deciding on your

approach.

LIRAE — PR REHT ZU K RA A BB — KB HTML GUIA, innerHTML 78K 2 £l bt s sR AT SE PR . (ELXT
TREHHFEEENS, HERIFAKR, Prodfri AR EICE T 5k, argegbt, BB, AURE Rk
LRE VBRI AT %

Cloning Nodes 7 /5%

Another way of updating page contents using DOM methods is to clone existing DOM elements instead of
creating new ones—in other words, using element.cloneNode() (where element is an existing node) instead of

document.createElement().

FEA DOM J5ids 8T SUHN N R 0 55— NS AR 5 © DOM JGER, AN G i ——RIE A

element.cloneNode() (element & —CAFERI T A0 A document.createElementy();

Cloning nodes is more efficient in most browsers, but not by a big margin. Regenerating the table from the
previous example by creating the repeating elements only once and then copying them results in slightly faster

execution times:

FERZEAS £, SR RUEARCE, ER&EARL . BT s i A A AT 7 R,
oo H AR K, RIEERRATE IR, EAEHCDR MR TR

* 2% in IE8, but no change in IE6 and IE7

7E 1ES HH 2%, {H7E IE6 F11 IE7 H1 &4t

» Up to 5.5% in Firefox 3.5 and Safari 4

7E Firefox 3.5 1 Safari 4 FH T 5.5%

* 6% in Opera (but no savings in Opera 10)

7£ Opera F1HR T 6% ({HJZ7E Opera 10 G410)

¢ 10% in Chrome 2 and 3% in Chrome 3

7F Chrome 2 T 10%, 7 Chrome 3 F1H T 3%

As an illustration, here's a partial code listing for generating the table using element.cloneNode():

—A R, X BRI element.cloneNode() i3 2 ()3 73 A5«

function tableClonedDOM() {

var i, table, thead, tbody, tr, th, td, a, ul, 1i,

oth = document.createElement('th"),

otd = document.createElement('td"),

otr = document.createElement('tr"),

oa = document.createElement('a’),

oli = document.createElement('li"),

oul = document.createElement('ul");

tbody = document.createElement('tbody");

for (i=1;1<=1000; i++) {
tr = otr.cloneNode(false);
td = otd.cloneNode(false);
td.appendChild(document.create TextNode((i % 2) ? 'yes' : 'no"));
tr.appendChild(td);
td = otd.cloneNode(false);
td.appendChild(document.createTextNode(i));
tr.appendChild(td);

td = otd.cloneNode(false);

td.appendChild(document.createTextNode('my name is #' + 1));
tr.appendChild(td);

// ... the rest of the loop ...

}

// ... the rest of the table generation ...

HTML Collections HTML 4

HTML collections are array-like objects containing DOM node references. Examples of collections are the

values returned by the following methods:
HTML %52 T4 DOM 5 5 FI S & . Mol B B E s 2 —ME S

* document.getElementsByName()
* document.getElementsByClassName()

* document.getElementsByTagName r()
The following properties also return HTML collections:
TAEPEE T HTML 245

document.images

All img elements on the page
T AT I o 3R

document.links

All a elements
B f<a>To %

document.forms

All forms

IR

document.forms[0].elements

All fields in the first form on the page

TR N R B A T B

These methods and properties return HTMLCollection objects, which are array-like lists. They are not arrays
(because they don't have methods such as push() or slice()), but provide a length property just like arrays and
allow indexed access to the elements in the list. For example, document.images[1] returns the second element in
the collection. As defined in the DOM standard, HTML collections are "assumed to be live, meaning that they are
automatically updated when the underlying document is updated"

(seehttp://www.w3.org/TR/DOM-Level-2-HTML/html.html#1D-75708506).

XLy N i [B] HTMLCollection X§ %%, 52 — MMM KIFIR . NI REA (BOVENTR A
Wl push()Ik slice()2 KM H7i5) , (HARPRAE T — length Bk, FNEAL—FEAR AT LU A 25117 1) 5028 F
JCE . 7, document.images[1]i [AI5E-& IS =TT . [EW DOM priftrp s SCRISEE, HTML %5
e MREIMETE, B SRR, el Be R (2R

http://www.w3.0org/TR/DOM-Level-2-HTML/html.htmI#ID-75708506) -

The HTML collections are in fact queries against the document, and these queries are being reexecuted every
time you need up-to-date information, such as the number of elements in the collection (i.e., the collection's

length). This could be a source of inefficiencies.

HTML £ & 5505 EAEE v scrs, MRS HE B0, B E EPATIXFE wEEAE . Bl S oo
ZMEH (WEEEAN length) o IX FE{RBCE FIRIF .

=

Expensive collections & IS

To demonstrate that the collections are live, consider the following snippet:

B REE IIAAENE, R N RSB

// an accidentally infinite loop

var alldivs = document.getElementsByTagName r('div');

for (var i =0; 1 < alldivs.length; i++) {

document.body.appendChild(document.createElement('div'))

-

This code looks like it simply doubles the number of div elements on the page. It loops through the existing
divs and creates a new div every time, appending it to the body. But this is in fact an infinite loop because the

loop's exit condition, alldivs.length, increases by one with every iteration, reflecting the current state of the

underlying document.

RBACSE & U TR A 1 div o R ECE . B div, BRREIE SR div
m# body Eifle. ESEEr FXZAFEMEI, FOMEMZ1EZAT alldivs.length FERF OGS ARG, B &

I H 2 SO 24 BPIRES o

Looping through HTML collections like this may lead to logic mistakes, but it's also slower, due to the fact

that the query needs to run on every iteration (see Figure 3-4).

BaxEim i HTML 84 4 5802885

e, M HWARE, POAVR GRS T &l (K 3-4) .

™y
150
114x
3
£ 9
ﬂ#
m_
%ﬁ x s 22 ﬂ
¢ &9 ﬁfﬁ

15x

Figure 3-4. Looping over an array is significantly faster than looping through an HTML collection of the sai

size and content

B 3-4 38 P I DT R RN A A HTML 465

As discussed in Chapter 4, accessing an array's length property in loop control conditions is not recommended.
Accessing a collection's length is even slower than accessing a regular array's length because it means rerunning
the query every time. This is demonstrated by the following example, which takes a collection coll, copies it into

an array arr, and then compares how much time it takes to iterate through each.

E7E S Y & o e, A B length BYEMIEIRAIBI 4. Ui 451 length LAY
length 3£ 248, DY EREWE G S ER e &g e £ Mmipl 4, f—EE coll # N2 H4l
arr 1, SR LU UOEACHT I I 1)

Consider a function that copies an HTML collection into a regular array:
HEIXA R, TR HTML 8548 N5 — N S

function toArray(coll) {
for (var 1=0, a=[], len = coll.length; i < len; i++) {
a[i] = coll[i];

}

return a;

And setting up a collection and a copy of it into an array:
BE MRS, e e .

var coll = document.getElementsByTagName r('div');

var ar = toArray(coll);
The two functions to compare would be:

FLAL B B A~ i 4 -

//slower
function loopCollection() {

for (var count = 0; count < coll.length; count++) {

}

// faster
function loopCopiedArray() {

for (var count = 0; count < arr.length; count++) {

When the length of the collection is accessed on every iteration, it causes the collection to be updated and has
a significant performance penalty across all browsers. The way to optimize this is to simply cache the length of

the collection into a variable and use this variable to compare in the loop's exit condition:

UERORNE RS S S 1 length BYERS, ©SEUEG &0, AN & BRI 48 B A TERES:
Ko MALHIINERTET R, HELE LGS length BIESAF 2] —NACE A, RIGEMI W & A TR AL

i

function loopCacheLengthCollection() {
var coll = document.getElementsByTagName r('div'),
len = coll.length;

for (var count = 0; count < len; count++) {

This function will run about as fast as loopCopiedArray().

MR EIEIT1S 5 loopCopiedArray()—AE R

For many use cases that require a single loop over a relatively small collection, just caching the length of the
collection is good enough. But looping over an array is faster that looping over a collection, so if the elements of
the collection are copied into an array first, accessing their properties is faster. Keep in mind that this comes at the
price of an extra step and another loop over the collection, so it's important to profile and decide whether using an

array copy will be beneficial in your specific case.

P BRGS0 — MR NEEBTIE P, R Z0R length 2847 — MELE RS LT T (H20R P £ 4 i 1
Lotk WRICKHESITREE NEEEA, ViR e IER Eth. §iCERHE - NEOMI DR, 2R
Eh, BTEAN AP FERT € 4 MR N R AR 5 A 1

Consult the function toArray() shown earlier for an example of a generic collection-to-array function.

HITAIEE 2T toArray () e&EHT A N2 — N T B A 6 B eR

Local variables when accessing collection elements 1 W54 T E N # HRHEE

The previous example used just an empty loop, but what happens when the elements of the collection are

accessed within the loop?

HITETE) AL 7N, WERAEIEM R RS o R, SRAERA?

In general, for any type of DOM access it's best to use a local variable when the same DOM property or
method is accessed more than once. When looping over a collection, the first optimization is to store the collection
in a local variable and cache the length outside the loop, and then use a local variable inside the loop for elements

that are accessed more than once.

—RORAL, W TAETZEALE) DOM Vi), 4R [E—> DOM J@VE sy 4 il —k UL, s —A
JERAC B G AF I DOM K b i — NG, B — UL EESI I TR R, HERTZ
HNGRAT length J&PE. RJE, WREMREIAEHZRTTHE N EGTR, BRI RZIE.

In the next example, three properties of each element are accessed within the loop. The slowest version

accesses the global document every time, an optimized version caches a reference to the collection, and the -

version also stores the current element of the collection into a variable. All three versions cache the length of the

collection.

TE N RIB -, FEPE U A TR =B BRI ARAS SRR AR EE) W42 A1) document, AR
WIRHIRAGEAE T — MEREEHGIH, BIROEAK LGSR ZRTR AN R E. JTH = MAH S
17 T A 11 length JE M.

// slow
function collectionGlobal() {
var coll = document.getElementsByTagName r('div'),
len = coll.length,
name =";
for (var count = 0; count < len; count++) {
name = document.getElementsByTagName r('div')[count].nodeName;
name = document.getElementsByTagName r('div')[count].nodeType;
name = document.getElementsByTagName r('div')[count].tagName;
§
return name;
s
// faster
function collectionLocal() {
var coll = document.getElementsByTagName r('div'),
len = coll.length,
name =";
for (var count = 0; count < len; count++) {
name = coll[count].nodeName;
name = coll[count].nodeType;
name = coll[count].tagName;

}

return name;

s
// fastest
function collectionNodesLocal() {
var coll = document.getElementsByTagName r('div'),
len = coll.length,
name =",
el = null;
for (var count = 0; count < len; count++) {
el = coll[count];
name = el.nodeName;
name = el.nodeType;
name = el.tagName;

}

return name;

55

Figure 3-5 shows the benefits of optimizing collection loops. The first bar plots how many times faster it is to
access the collection through a local reference, and the second bar shows that there's additional benefit to caching

collection items when they are accessed multiple times.

K 3-5 o TSRS IR AF Ak 20— FAT I e bs 1B R AR 5 | FH U7 MR & A R A LR T, 20 4%
TR I (7 Y 22 T3] I 2 3 8 45 ety R XT3 R 3R T

-
350 4 -
':l'm_
250 - g e
£ a0+ £
E 150
100 -
W = 22 3= =z o=z mE 52 B8
W e ME S A ==
|:] o T T I i e S .-1: e E oI] -It"-'-‘
L T T T T
£ € L g P F EE T
TP FEE S

Figure 3-5. Benefit of using local variables to store references to a collection and its elements during loops
K 3-5 TEfEM T R B AR & 5 | IR & o3 R K IR T
Walking the DOM DOM &%

The DOM API provides multiple avenues to access specific parts of the overall document structure. In cases

when you can choose between approaches, it's beneficial to use the most efficient API for a specific job.

DOM APT &AL [2 Rl A= U M BEAN SO EE M R B0 730 A URTE 2 MO AT R L IR AT IERE I, Bl
BN S8 BRAFIE PR A AL APL

Crawling the DOM (X DOM

Often you need to start from a DOM element and work with the surrounding elements, maybe recursively
iterating over all children. You can do so by using the childNodes collection or by getting each element's sibling

using nextSibling.

PREH FF 2> DOM JusR T, B1FH BT s, B8 I AT 1K 7719 s AR FT EURE A childNode
A B 8] nextSibling FRAFRFASTCE B I T

Consider these two equivalent approaches to a nonrecursive visit of an element's children:

SRR AN RIRE S REI O] 5, SR A ARIE YA)7 38— S Te s 1 A

function testNextSibling() {
var el = document.getElementByld('mydiv'),
ch = el.firstChild,
name =";
do {
name = ch.nodeName;
+ while (ch = ch.nextSibling);
return name;
s
function testChildNodes() {
var el = document.getElementByld(‘'mydiv'),
ch = el.childNodes,
len = ch.length,
name =";
for (var count = 0; count < len; count++) {
name = ch[count].nodeName;

}

return name;

55

Bear in mind that childNodes is a collection and should be approached carefully, caching the length in loops

so it's not updated on every iteration.
icfE, childNodes f&— M, E/ANLAEE, FERIA A length JEPEHT AIANSFERFUGE A A R

The two approaches are mostly equal in terms of execution time across browsers. But in IE, nextSibling
performs much better than childNodes. In IE6, nextSibling is 16 times faster, and in IE7 it's 105 times faster.
Given these results, using nextSibling is the preferred method of crawling the DOM in older IE versions in

performance-critical cases. In all other cases, it's mostly a question of personal and team preference.

TEANRR A b, IX P FOTVERBAT I (A BEA AR S . (HZ7E IE 1, nextSibling FIRAF L childNode 4.
7£ IE6 1, nextSibling HXT T4 16 £, T7E IE7 UK 105 £, B TIXELEE R, 7R21K) IE PR T
%A T, H nextSibling #MHL DOM £ &L k. EHAMER T, FEHDS AR

Element nodes JTZ= 77 /&

DOM properties such as childNodes, firstChild, and nextSibling don't distinguish between element nodes
and other node types, such as comments and text nodes (which are often just spaces between two tags). In many
cases, only the element nodes need to be accessed, so in a loop it's likely that the code needs to check the type of

node returned and filter out nonelement nodes. This type checking and filtering is unnecessary DOM work.

DOM @ 1%t childNode, firstChild, H1 nextSibling /N[X 43 762 1 SR HAD IS AT 2, dnyF BT AR
AT GEPI MRS i RS o I EEN T, RA R T AFEMUIN, FrbERfS,
LT R 20T AR PSR T A A, i B2 T A I A RN e AT AN BRI DOM . #:1E .

Many modern browsers offer APIs that only return element nodes. It's better to use those when available,
because they'll be faster than if you do the filtering yourself in JavaScript. Table 3-1 lists those convenient DOM

properties.

V2N A2t T APL s8R e fle R AT A R A A AT SRk, B EATHAR B 2 7F
JavaScript 5 VA E R 2R 3-1 7 X LT DOM @ik,

Table 3-1. DOM properties that distinguish element nodes (HTML tags) versus all nodes

F£3-1 HERITET AN DOM B (HTML #3285 MERTE T SR BT

Property Use as a replacement for
children childNodes
childElementCount childNodes. length
firstElementChild firstChild
lastElementChild lastChild
nextElementSibling nextSibling

previousElementSibling previousSibling

All of the properties listed in Table 3-1 are supported as of Firefox 3.5, Safari 4, Chrome 2, and Opera 9.62.

Of these properties, IE versions 6, 7, and 8 only support children.

% 3-1 RS A JE PEBE 98 4 Firefox 3.5, Safari4, Chrome 2, F1 Opera 9.62 37 ¥f. raixLe@ Pt

IE6, 7, 8 HIZ¥F children.

Looping over children instead of childNodes is faster because there are usually less items to loop over.
Whitespaces in the HTML source code are actually text nodes, and they are not included in the children
collection. children is faster than childNodes across all browsers, although usually not by a big margin—1.5 to 3
times faster. One notable exception is IE, where iterating over the children collection is significantly faster than

iterating over childNodes—24 times faster in IE6 and 124 times faster in IE7.

i)77 children H childNodes Bk, [KAEE-EIHE />, HTML P53 8 k& s2 b B SCART A, 1A E,
FETE children 4. 7EFTA W M4 children Lt childNodes B, EARZERIAR AR, @HEH 1.5 33
7F 1E6 iR 24 1%, 7 IE7 il 124

%, FERMESE RN IE, ¥ children B SBT3 B childNodes

o
(7.
= o

The Selectors API JEFFE: API

When identifying the elements in the DOM to work with, developers often need finer control than methods
such as getElementByld() and getElementsByTagName() can provide. Sometimes you combine these calls and
iterate over the returned nodes in order to get to the list of elements you need, but this refinement process can

become inefficient.

Pl DOM T s, HRESE TR, MANE getElementByld()H
getElementsByTagName _r()Z I ERE. A I R4 & X 28 ok 200 H HEIE AR E BATIR B 5, DRI
TEHIICER, X RGBS Al BEIE BRI .

On the other hand, using CSS selectors is a convenient way to identify nodes because developers are already
familiar with CSS. Many JavaScript libraries have provided APIs for that purpose, and now recent browser
versions provide a method called querySelectorAll() as a native browser DOM method. Naturally this apprrach

is faster than using JavaScript and DOM to iterate and narrow down a list of elements.

7, AT CSS MR — MERERIBE T S E, BT RE X CSSIRFGE T . 7%
JavaScript JE AR T APL 1 HEGRHw WEas 42 it T—4~42°4 querySelector AL() ¥ iR £ ¥i#% DOM B
B, BARIXF 7L AE A JavaScript F1 DOM A48 /N e 24 R 7V Bk

Consider the following:

=SSV LE

var elements = document.querySelectorAll(*#menu a');

The value of elements will contain a list of references to all a elements found inside an element with
id="menu". The method querySelectorAll() takes a CSS selector string as an argument and returns a
NodeList—an array-like object containing matching nodes. The method doesn't return an HTML collection, so
the returned nodes do not represent the live structure of the document. This avoids the performance (and

potentially logic) issues with HTML collection discussed previously in this chapter.

elements [F{ECRF G & — NG ISR, R EA id="menu"BYEMTTE . K%L querySelectorAll() I
—™ CSS AL 45 5 ZHOUTIR Al —> NodeList—— FH A4 5 4 A1 BT /U BRI X B o S R AN 3R (7]
HTML 555, A LUR B AN ORI R A AE M S5 o IRt G 1A S AT $2 201 HTML S8 & B il 4
HIPERE ML (LA AR IZ R D

To achieve the same goal as the preceding code without using querySelectorAll(), you will need the more

verbose:

AT A querySelectorAll(), & F[FAER B RIS ST — L,

var elements = document.getElementByld(‘'menu').getElementsByTagName r(‘a');

In this case elements will be an HTML collection, so you'll also need to copy it into an array if you want the

exact same type of static list as returned by querySelectorAll().

XFELLT elements 4 & —4> HTML 84, FrURIEFER 8 A — N+, wRIRER 25
querySelectorAL() [FJAE F1IR [FHE R T % o

Using querySelectorAll() is even more convenient when you need to work with a union of several queries.
For example, if the page has some div elements with a class name of "warning" and some with a class of "notice",

to get a list of all of them you can use querySelectorAll():

RAR EERE BN,] querySelector AL SEAN(EA] . Biltn, G BTl - A £2 div JuER I class #4082

"warning", 7 —%£ class % f&"notice", PRFILLA querySelectorAll()—iRPEIRATIX T Ao

var errs = document.querySelectorAll('div.warning, div.notice');

Getting the same list without querySelectorAll() is considerably more work. One way is to select all div

elements and iterate through them to filter out the ones you don't need.

WERAE querySelectorAll(), ZRAFRIFEIIRT EHE L THF. —ANINERIEFEFTAIN div TE, RIGIE
I IAAERAT L U8 AR LA R BT,

var errs = [],
divs = document.getElementsByTagName r('div'),
classname =";
for (var 1 =0, len = divs.length; 1 <len; i++) {
classname = divs[i].className;
if (classname === "notice' || classname === 'warning') {
errs.push(divs[i]);

}

Comparing the two pieces of code shows that using the Selectors API is 2 to 6 times faster across browsers

(Figure 3-6).

PR ix PR B AL, i FHIEFEe APT ELAF R T 2~6 15 (& 3-6) &

a_

|'|"..

.06

5 -

52 488
i“' L6535
£

S - 213

74 -

14

0 T T - T ; - 1

@ ke 0 =)Y %)
& & F & & ¢

Figure 3-6. The benefit of using the Selectors API over iterating instead of the results of

getElementsByTagName 1()

K 3-6 A FHIERESS AP Filfi H getElementsByTagName ()¢ BEXT LL

The Selectors API is supported natively in browsers as of these versions: Internet Explorer

8, Firefox 3.5, Safari 3.1, Chrome 1, and Opera 10.

AN VRS SRR EPESS APL: Internet Explorer 8, Firefox 3.5, Safari 3.1, Chrome 1, Opera 10,

As the results in the figure show, it's a good idea to check for support for document.querySelectorAll() and
use it when available. Also, if you're using a selector API provided by a JavaScript library, make sure the library

uses the native API under the hood. If not, you probably just need to upgrade the library version.

IEaE R SR IBAEE, B 55 %8 37 1 document.querySelectorAll(), ARAm A . WERIREH
JavaScript FEFTIRHEFIIEFERS APL BA— Mz ERBHSATH T IRAETE mRAR, RIS ET
RENHIRA

You can also take advantage of another method called querySelector(), a convenient

method that returns only the first node matched by the query.

PRIEFT LA 55—~ s % querySelector() 2k, I&XMUEA A pA 2 H IR 175 & EE A AR 20— R

These two methods are properties of the DOM nodes, so you can use document.querySelector('.myclass') to
query nodes in the whole document, or you can query a subtree using elref.querySelector('.myclass'), where

elref is a reference to a DOM element.

XA BREES /2 DOM 17 s @, B AR AT BUE A document.querySelector('.myclass') R £x) &4 SRS

H e, B A elref.querySelector(.myclass')7E % AT £), HA elref £ —4> DOM JTERITIH .

Repaints and Reflows EZ:FIEHERR

Once the browser has downloaded all the components of a page—HTML markup, JavaScript, CSS,

images—it parses through the files and creates two internal data structures:

M AS TS ATA JUH HTML #51c, JavaScript, CSS, ER)5, TN SCEFERIE NS W ESBEE

iR .

A DOM tree

A representation of the page structure
—# DOM #f
IR B 451

A render tree

A representation of how the DOM nodes will be displayed
—RIE G
K78 DOM 1 mlU A 7s

The render tree has at least one node for every node of the DOM tree that needs to be displayed (hidden DOM
elements don't have a corresponding node in the render tree). Nodes in the render tree are called frames or boxes
in accordance with the CSS model that treats page elements as boxes with padding, margins, borders, and position.

Once the DOM and the render trees are constructed, the browser can display ("paint") the elements on the p:

A O R 22 s DOM BT)l A7 il /b1 s (B2 DOM TG SR AETE R i B4 X T
R o TEZE BRI RO HET B <, F5E CSS BIBE X, # iU T R A RA ., 20,
HERGLER G — H DOM MANE R HiE e i, W asml il LR R (2360 TR ERTR 1.

When a DOM change affects the geometry of an element (width and height)—such as a change in the
thickness of the border or adding more text to a paragraph, resulting in an additional line—the browser needs to
recalculate the geometry of the element as well as the geometry and position of other elements that could have
been affected by the change. The browser invalidates the part of the render tree that was affected by the change
and reconstructs the render tree. This process is known as a reflow. Once the reflow is complete, the browser

redraws the affected parts of the screen in a process called repaint.

2 DOM SRS B TR KL R PE (SEE) ——@lin el 3e 1 IaHE 38 F2 sl e Bk i nscr, Ko
— AR A T R R TR A LT R, i B TR B LA R A Bt R R A
S ENFM . W LA EE G B2 BRI R, REEER . XN IR E R . EAERRE
BRI, PSS AE — SRR R EDT B B S B2 R

Not all DOM changes affect the geometry. For example, changing the background color of an element won't
change its width or height. In this case, there is a repaint only (no reflow), because the layout of the element hasn't

changed.

AP E) DOM SR o sem U@ e i, Sk — Mo RS SO A s e i s s s .
FERRFGOLS, A #Ee: CRRREEHRD . FOYITR AR 3 .

Repaints and reflows are expensive operations and can make the UI of a web application less responsive. As

such, it's important to reduce their occurrences whenever possible.

LB RO AR R B, W RE 204 SOV A B AR R B AR BTEL, 20 i 2R AT RE T
DIXRHEI R

When Does a Reflow Happen? EHRESE4EHA?

As mentioned earlier, a reflow is needed whenever layout and geometry change. This happens when:

IEAATRIT R 2R, A0 RN LT SR N R E R . 75 MRS S b R AR AR
* Visible DOM elements are added or removed
@S I =B AT LK) DOM TG
* Elements change position
i VA G
* Elements change size (because of a change in margin, padding, border thickness, width, height, etc.)
JUER RO B (RUDGsE, B9, AR, S8R, @ARmER)
* Content is changed, e.g., text changes or an image is replaced with one of a different size
WASA, B, SORBAEE 3 s — AR R T
* Page renders initially
BRI TLIE 3
* Browser window is resized
WA e R

Depending on the nature of the change, a smaller or bigger part of the render tree needs to be recalculated.

Some changes may cause a reflow of the whole page: for example, when a scroll bar appears.

IRYE SR VE S, R EBOR BN — P80 /7 ZEE R . B i T S B R B
B MNRBN K L .

Queuing and Flushing Render Tree Changes 2] 3 Fill#7 15 % it 28

Because of the computation costs associated with each reflow, most browsers optimize the reflow proce

queuing changes and performing them in batches. However, you may (often involuntarily) force the queue t

flushed and require that all scheduled changes be applied right away. Flushing the queue happens when you want

to retrieve layout information, which means using any of the following:

DU o B SRR SRR %, K2 0 S48 Il A S SOt & R LA RO A2 . 2R, AT
B (2% AN B) SR BAIIRHTIE ZSR T T RIS AR 2 L2 R o AREAT SR £ B K B AT K S U
BRSO, SRR] TN MRk

« offsetTop, offsetLeft, offsetWidth, offsetHeight
* scrollTop, scrollLeft, scrollWidth, scrollHeight
* clientTop, clientLeft, clientWidth, clientHeight

+ getComputedStyle() (currentStyle in IE) (7E IE LA £0FX 4 currentStyle)

The layout information returned by these properties and methods needs to be up to date, and so the browser

has to execute the pending changes in the rendering queue and reflow in order to return the correct values.

A1 JE A5 B HR LR PR 3R B R B, B LA b ds AR AN A TIE e BA A A e A2 10 H B
FR LI (5] TE A (A 4

During the process of changing styles, it's best not to use any of the properties shown in the preceding list. All
of these will flush the render queue, even in cases where you're retrieving layout information that wasn't recently

changed or isn't even relevant to the latest changes.

FECAE R ISR, SR AN B AT AT T 2 AR L S I o AR AT — 07)R B HTE Je B, RIME{R IE
FEZREAR 8 B AR A A= AR I B B) A2 TS SR A Jm £ R

Consider the following example of changing the same style property three times (this is probably not

something you'll see in real code, but is an isolated illustration of an important topic):

F BT XM, SR R R JE M =R GRS R ARTE B IERAARS T LA, Aad e oz
MR Y — N E D .

// setting and retrieving styles in succession

var computed,

tmp =",
bodystyle = document.body.style;
if (document.body.currentStyle) { // IE, Opera
computed = document.body.currentStyle;
}else { // W3C
computed = document.defaultView.getComputedStyle(document.body, ");
H
// inefficient way of modifying the same property
// and retrieving style information right after
bodystyle.color = 'red’;
tmp = computed.backgroundColor;
bodystyle.color = 'white";
tmp = computed.backgroundImage;
bodystyle.color = 'green’;

tmp = computed.backgroundAttachment;

In this example, the foreground color of the body element is being changed three times, and after every change,
a computed style property is retrieved. The retrieved properties—backgroundColor, backgroundImage, and
backgroundAttachment—are unrelated to the color being changed. Yet the browser needs to flush the render

queue and reflow due to the fact that a computed style property was requested.

TR T, body JUER AT R O T =k, BFIRERLZE, #SA computed FIRE . F AR
4 backgroundColor, backgroundImage, #1 backgroundAttachment 5 Zi €8 AR TEIC. SRTM, W W48 75 ZEhlHT

TEGBAS FEEHERR, B4 computed Fo RS #% AT 1T 5| /2 o

A better approach than this inefficient example is to never request layout information while it's being changed.

If the computed style retrieval is moved to the end, the code looks like this:

LIS ANUFRCR I 1) 1 5L I 7 AN EE AT R (5 B S I e o W RRs) computed XU A
WEIRR, AU AR ARAG I T

bodystyle.color = 'red';
bodystyle.color = 'white';
bodystyle.color = 'green';

tmp = computed.backgroundColor;
tmp = computed.backgroundImage;

tmp = computed.backgroundAttachment;

The second example will be faster across all browsers, as seen in Figure 3-7.

FEFT A S b, 3 AR R, sl 3-7 B

ﬁ -
520
5 | T
4
F = LI% e 254
2 18 18N 1.94x
1.05%
1]

& Q'@ {JI{}@G&#@E&

Figure 3-7. Benefit of preventing reflows by delaying access to layout information
K 3-7 R AR Uy] A3 R {5 R S AR R T A R AR e S T
Minimizing Repaints and Reflows F/MLEZLFEHR

Reflows and repaints can be expensive, and therefore a good strategy for responsive applications is to reduce
their number. In order to minimize this number, you should combine multiple DOM and style changes into a batch

and apply them once.

HHRCME LA & 58, BrLL, P2 fE e m NS — sl D IS R AR L2 o Db A
KRB PRIZAS 21> DOM AT RS P22 & 3 21— M iR — R AT

Style changes (2> X%

Consider this example:

RGN T

var el = document.getElementByld('mydiv');
el.style.borderLeft = '1px';
el.style.borderRight = "2px';

el.style.padding = 'Spx';

Here there are three style properties being changed, each of them affecting the geometry of the element. In the
worst case, this will cause the browser to reflow three times. Most modern browsers optimize for such cases and
reflow only once, but it can still be inefficient in older browsers or if there's a separate asynchronous process
happening at the same time (i.e., using a timer). If other code is requesting layout information while this code is

running, it could cause up to three reflows. Also, the code is touching the DOM four times and can be optimized.

KBS T =R R, B RECEHREmR 2 o K LR Y. RIS T, B S EO A
HERR T =R K2 BRI UAL TR 0 R BT — R E R, (BRAEZ WA+, s [N —
N ERED R (PIER T —SERES) BRI . AR AR AR X B IE AT IN & A
JFfE R, ¥SS=REAR R . H, AT R DOM Uk, wTLgiiit.

A more efficient way to achieve the same result is to combine all the changes and apply them at once,

modifying the DOM only once. This can be done using the cssText property:

— BRI RCR MR E R AR B SR & R R MAT, RED DOM —iR. wiE M

cssText J@ k=L HR -

var el = document.getElementByld('mydiv');

el.style.cssText = 'border-left: 1px; border-right: 2px; padding: 5px;';

Modifying the cssText property as shown in the example overwrites existing style information, so if you want

to keep the existing styles, you can append this to the cssText string:

XA AR AZ 24 cssText JE{YE, 78 o CAFFERI RIS o WERPRFT AR R M BT XS, AR AT LR
BB IITE cssText 24 5 15 1H o

el.style.cssText +="; border-left: 1px;';

Another way to apply style changes only once is to change the CSS class name instead of changing the inline
styles. This approach is applicable in cases when the styles do not depend on runtime logic and calculations.
Changing the CSS class name is cleaner and more maintainable; it helps keep your scripts free of presentation
code, although it might come with a slight performance hit because the cascade needs to be checked when

changing classes.

Ty A R R KR I IR AB 2 CSS IZRALRER, AR B S A RS ARG . XM T2
RS AR T 12T, AFRERERE. 0k CSS RERTEEM, o T4y AT IRIFHA &
FriE s, BARE TR RE MRy, R AR I & E R B PR

var el = document.getElementByld('mydiv');

el.className = 'active';

Batching DOM changes H#tE & DOM

When you have a number of changes to apply to a DOM element, you can reduce the number of repaints and

reflows by following these steps:

HRTR ZX DOM JCRIEAT ZRBEUN, URAT LAE I DL 250 SR> B 2R SRR IR

1. Take the element off of the document flow.

MR R R Rz TR

2. Apply multiple changes.

XY 2 B A

3. Bring the element back to the document.

F o ER A SR

This process causes two reflows—one at step 1 and one at step 3. If you omit those steps, every change you

make in step 2 could cause its own reflows.

P R 5 R PR ——3 B 5 1R Ik, BB TR WK ANE TIZPA PR, IBAH 8
FRRFIR ARG 51 Fe— IR HERR

There are three basic ways to modify the DOM off the document:

A3 = PEEATHEFT LUK DOM SRS A

* Hide the element, apply changes, and show it again.

feiot®R, HATE, REHETRE.

* Use a document fragment to build a subtree outside of the live DOM and then copy it to the document.

SR — SO e A7 DOM ZAME— AT H, AR5 B LRI .

* Copy the original element into an off-document node, modify the copy, and then replace the original element

once you're done.

R SR A6 70 B — M@ SO T R, BRElA, REE SRR R

To illustrate the off-document manipulations, consider a list of links that must be updated with more

information:

R R SO R AT, 5 B — MR AIRR, B R S 2 A B ST

<ul id="mylist">

Stoyan

Julien

Suppose additional data, already contained in an object, needs to be inserted into this list. The data is defined

as:

TR M IECHR LA TE SR T, BB AR ASIZe . R 3 S

var data = [
{
"name": "Nicholas",
"url": "http://nczonline.net"
5
{

"name": "Ross",

"url": "http://techfoolery.com"

The following is a generic function to update a given node with new data:

N NI R A T RRT RO BB 2R E T R

function appendDataToElement(appendToElement, data) {

var a, li;

for (var 1 =0, max = data.length; i < max; i++) {
a = document.createElement('a');
a.href = data[i].url;
a.appendChild(document.createTextNode(data[i].name));
li = document.createElement('li');
li.appendChild(a);

appendToElement.appendChild(li);

-

The most obvious way to update the list with the data without worrying about reflows would be the following:

1 B dfs BB BN PR T ANVE EHERA L, B iR

var ul = document.getElementByld(‘'mylist');

appendDataToElement(ul, data);

Using this approach, however, every new entry from the data array will be appended to the live DOM tree and
cause a reflow. As discussed previously, one way to reduce reflows is to temporarily remove the element

from the document flow by changing the display property and then revert it:

FEAIRAN T35, AR, data BAS ERIEEASHT 46 H B INE) DOM W #iox BRI . Wiy i A ig it i,
kD> B HERR) — ANy 22 I 2 display J& Y, RIS ASCR B Brou R AR KR €

var ul = document.getElementByld(‘'mylist');
ul.style.display = 'none';
appendDataToElement(ul, data);

ul.style.display = 'block";

Another way to minimize the number of reflows is to create and update a document fragment, completely off
the document, and then append it to the original list. A document fragment is a lightweight version of the
document object, and it's designed to help with exactly this type of task—updating and moving nodes around.
One syntactically convenient feature of the document fragments is that when you append a fragment to a node, the
fragment's children actually get appended, not the fragment itself. The following solution takes one less line of

code, causes only one reflow, and touches the live DOM only once:

Ty Rl > B HRR R 5 AR SR Z AT R — A SO R B, KRR e ITINTE R A6 8 IR L.
SCRS R R — AN B document X, BRI TR BAl L RINAES . SO B —ME
A TEE R 2R 18] R BRI — AN Fr IR, SERRAs AN R SRS Fr i) 57 B, AN R BB 2
W T AT ARG, 51— REHRR, Rl f7AE DOM™ IRk,

var fragment = document.createDocumentFragment();
appendDataToElement(fragment, data);

document.getElementByld(‘'mylist').appendChild(fragment);

A third solution would be to create a copy of the node you want to update, work on the copy, and then, once

you're done, replace the old node with the newly updated copy:
BRI e GV SR R RIAS, RETERIA LR, BB RS A

var old = document.getElementByld('mylist');
var clone = old.cloneNode(true);
appendDataToElement(clone, data);

old.parentNode.replaceChild(clone, old);

The recommendation is to use document fragments (the second solution) whenever possible because they
involve the least amount of DOM manipulations and reflows. The only potential drawback is that the practice of
using document fragments is currently underused and some team members may not be familiar with the

technique.

R R AT RS T SO i (B MR s 22D BB e B D B K) DOM AR B HERR . Pl — P AE I
RV, HATSOE A WNA B BRI A, JF R AT REA BB IERIAR

Caching Layout Information ZM# FE{ER

As already mentioned, browsers try to minimize the number of reflows by queuing changes and executing
them in batches. But when you request layout information such as offsets, scroll values, or computed style values,
the browser flushes the queue and applies all the changes in order to return the updated value. It is best to
minimize the number of requests for layout information, and when you do request it, assign it to local variables

and work with the local values.

BT g B ARSIt B A TR i, RERADEHROR . MR EWA R B s . Rahsk
PrE, BRI, SIS SRS IAT T B ettt DURPIBOIT AUE . Bl R R B A R 5
BREMRE, BN ERS R, JFHREEES 5.

Consider an example of moving an element myElement diagonally, one pixel at a time, starting from position

100 x 100px and ending at 500 x 500px. In the body of a timeout loop you could use:

2 [E&— M, ¥ 70 E myElement [/ 475 J7 97 H , FRHR— MG, B4R T 100x100 17°E, 455K T 500x500
fr'E, TE timeout P A A R AT LT A -

// inefficient

myElement.style.left = 1 + myElement.offsetLeft + 'px';
myElement.style.top = 1 + myElement.offsetTop + 'px';
if (myElement.offsetLeft >= 500) {

stopAnimation();

-

This is not efficient, though, because every time the element moves, the code requests the offset values,
causing the browser to flush the rendering queue and not benefit from its optimizations. A better way to do the
same thing is to take the start value position once and assign it to a variable such as var current =
myElement.offsetLeft;. Then, inside of the animation loop, work with the current variable and don't request

offsets:

IXPEMUAR B, BN ROEB S, U EamE R, SENEERIFE LS, FEa M3k
e H—MIMERTFEPFERGBAEME IR, BEAN AR var current = myElement.offsetLeft;. 4%

J5, Eohm{EA G, fEH current &1 A H &R =

current++
myElement.style.left = current + 'px’;
myElement.style.top = current + 'px';

if (current >= 500) {

stopAnimation();

-

Take Elements Out of the Flow for Animations Y G X HEIE R

Showing and hiding parts of a page in an expand/collapse manner is a common interaction pattern. It often

includes geometry animation of the area being expanded, which pushes down the rest of the content on the page.

SR AN B AR 73 T R T A B a2 — Ao WA Al E RS X R L shm, K
DI HABER S HE 77 o

Reflows sometimes affect only a small part of the render tree, but they can affect a larger portion, or even the
whole tree. The less the browser needs to reflow, the more responsive your application will be. So when an
animation at the top of the page pushes down almost the whole page, this will cause a big reflow and can be
expensive, appearing choppy to the user. The more nodes in the render tree that need recalculation, the worse it

becomes.

R N S E G —/NER 7y, (BT DG AR R — &80y, E S RANE R . 00 7 2
FRCRIFR 23BN, I RSP B8 o 3 S At o P A — AN ST R O s RS 1 22 A 2384 T, 55
RERBEFEREIE, A RIS Rl R IR 2 B SR R, B AR AT R,

A technique to avoid a reflow of a big part of the page is to use the following steps:
A5 CAT 20 B vy DATRE G 6 oK 3 D T 3 AT AR

1. Use absolute positioning for the element you want to animate on the page, taking it out of the layout flow of

the page.
fi P2 XS AR AR B A7 T B TR, A T Ui AR R b

2. Animate the element. When it expands, it will temporarily cover part of the page. This is a repaint, but only of a

small part of the page instead of a reflow and repaint of a big page chunk.

JABICRBNE . YR, NSRS U, K DR, ER BTN E o,
G EHERR T E 2 KBTI

3. When the animation is done, restore the positioning, thereby pushing down the rest of the document only once.
BB, EEER, A KRS HAb TR I E
VT SCP IR LR 2, XX =P RS

Ly GO TER AT LA &/ R IT e R “shim o, A AR BB T8 AL, e R B,
AR DU R b TR AR, R R TR .

2. JERITaE REE“shmi e R BT IR AR TTER 10 AR BT E5ae, bl i, At o5 0T By R <5l
W TTER AR M2, TR R hshme s A .

3. “BhETERNSNELE W, HEAOCENNE TRASECE Ty, ST T
IE and :hover IE F:hover

Since version 7, IE can apply the :hover CSS pseudo-selector on any element (in strict mode). However, if
you have a significant number of elements with a :hover, the responsiveness degrades. The problem is even more

visible in IE 8.

HMWRA 7 2)5, 1E aJITEAEM T E OPASBID B4 A hover IXA™ CSS fhiEFE#s. A, W KE
FITCERAE M T shover F8 4 25 B IS BT o L o) LAE TES PR 225

For example, if you create a table with 500—-1000 rows and 5 columns and use tr:hover to change the
background color and highlight the row the user is on, the performance degrades as the user moves over the table.
The highlight is slow to apply, and the CPU usage increases to 80%—90%. So avoid this effect when you work

with a large number of elements, such as big tables or long item lists.

P, WERAREVE 7 H1 500-1000 47 5 IR, FFAE trhover BT FANE, Fi s WAR G
PRFTFERIAT, BAREARER BB, PRRESMR. s MR, CPU MR SRA
80%-90%. Fir LA 4703 B AR 2 Nl S A X MR R, 1 R K R BUAR K 8138

Event Delegation FHH-HEE

When there are a large number of elements on a page and each of them has one or more event handlers
attached (such as onclick), this may affect performance. Attaching every handler comes at a price—either in the
form of heavier pages (more markup or JavaScript code) or in the form of runtime execution time. The more
DOM nodes you need to touch and modify, the slower your application, especially because the event attaching
phase usually happens at the onload (or DOMContentReady) event, which is a busy time for every
interaction-rich web page. Attaching events takes processing time, and, in addition, the browser needs to keep
track of each handler, which takes up memory. And at the end of it, a great number of these event handlers might
never be needed(because the user clicked one button or link, not all 100 of them, for example), so a lot of the

work might not be necessary.

LR AR KRR, MHB N TRG SRS E Z &8 (Bl onclick) I, ATRERE
WPt e AR ARHOE A AR, TR BRI 1T i H (522 ¥ ST AR iGN JavaScript £U5)
B RRIAEIBAT HIRABAT IR o fRFGEDTAZECEL 1) DOM T i, TRt e, FFal 2Ry FeF
HAR R ALK LA onload (B DOMContentReady) A4, SHAEAT— A5 22 B/ TR AR 2 — N EAT I
T B ARG TR, Si4h, W& RAER D MmRics, SHAEZAF. LT
SR, XEEFA A R B R AT EL (DA 100% A% HL B FH R A S B P mi 2D
BT AR & TARAGR AL 22

A simple and elegant technique for handling DOM events is event delegation. It's based on the fact that events
bubble up and can be handled by a parent element. With event delegation, you attach only one handler on a

wrapper element to handle all events that happen to the children descendant of that parent wrapper.

—AME M OLHER AL DOM SR ECAR R FAHEE . ER TR 350 SRR BRSO
Ak RS ERRZ G, RAFREE - METR BEE MW, AT 7 i BRI
Fift.

According to the DOM standard, each event has three phases:

fi4E DOM brift, FAFHAE =B

* Capturing

ik

* At target

2k H s

* Bubbling

Capturing is not supported by IE, but bubbling is good enough for the purposes of delegation. Consider a page

with the structure shown in Figure 3-8.

IE ANSCHFAiAR, (ESCOHEE B B 1. 8K 3-8 B i 45 .

¥ zhtml wmies="hitp:/ fwwscwd.ong/ 1008 uhtml * smbiang="en" lang="en" >
* <heads
¥ zhodys
¥ odive
¥ <ul [d="menu">
*
 menu #1</ax
</H=
r <l
k<l
el
&yl
</ div>

Figure 3-8. An example DOM tree

K 3-8 —> DOM ¥ %1 1

When the user clicks the "menu #1" link, the click event is first received by the <a> element. Then it bubbles
up the DOM tree and is received by the element, then the , then the <div>, and so on, all the way to the
top of the document and even the window. This allows you to attach only one event handler to a parent element

and receive notifications for all events that happen to the children.

P R T “menu #1788, AU B S <a> o R R AR5 EWTE DOM B EIE, #ionERik
2, WER, 5 R<div>, %%, —HAERMTR, H £ window. ZKAARRTTUREL TR E
FR - AFEIN, RERTT T ou R ARG

Suppose that you want to provide a progressively enhanced Ajax experience for the document shown in the
figure. If the user has JavaScript turned off, then the links in the menu work normally and reload the page. But if
JavaScript is on and the user agent is capable enough, you want to intercept all clicks, prevent the default behavior
(which is to follow the link), send an Ajax request to get the content, and update a portion of the page without a
refresh. To do this using event delegation, you can attach a click listener to the UL "menu" element that wraps all

links and inspect all clicks to see whether they come from a link.

RBE R Z N B b BT 7R R SCR AR At — N2 P IR Ajax ARBG . WS P OCH T JavaScript, SEER AR #E
AR LR H 2 0T . (EZ W2R JavaScript £ T M0 B P ACHAT 298 RE Sy, IRABEEGR A sl
BHAEBRATA CREABERD » R0E > Ajax TEREREA R, AR5 ANRIET DI REDS SRR) DI . T
FAHFEE SCOLTIRE, RTTLIAE UL " menu" oo — A a0 a8, & B A BERIF YT B A click
, BEMATR SR E MR,

document.getElementByld('menu').onclick = function(e) {
// x-browser target
e = ¢ || window.event;
var target = e.target || e.srcElement;
var pageid, hrefparts;
// only interesed in hrefs
// exit the function on non-link clicks
if (target.nodeName !=="A") {
return;
§
// figure out page ID from the link
hrefparts = target.href.split('/");
pageid = hrefparts[hrefparts.length - 1];

pageid = pageid.replace('.html', ");

// update the page
ajaxRequest("xhr.php?page='+ id, updatePageContents);
// x-browser prevent default action and cancel bubbling
if (typeof e.preventDefault === "function’) {
e.preventDefault();
e.stopPropagation();
} else {
e.returnValue = false;
e.cancelBubble = true;
H
s

As you can see, the event delegation technique is not complicated; you only need to inspect events to see
whether they come from elements you're interested in. There's a little bit of verbose cross-browser code, but if you

move this part to a reusable library, the code becomes pretty clean. The cross-browser parts are:

IEWRETE 2IFAREE, FAHEEBAIEAE R KA R FE, HEMITRA R MRE BRI TTR
R o AT LA T S AR AR, WRIRE ENTRE A AT TR, AU AR A S T
N B E R A

* Access to the event object and identifying the source (target) of the event

ViR FAER S, IR CHAR)

* Cancel the bubbling up the document tree (optional)

SiROCRH EEWE (AT

* Prevent the default action (optional, but needed in this case because the task was to trap the links and not follow

them)

BHAEBRINZAE (Arak, (BB 220, RO AR S5 Al AR T AN K 888 1)

Summary 245

DOM access and manipulation are an important part of modern web applications. But every time you cross the
bridge from ECMAScript to DOM-land, it comes at a cost. To reduce the performance costs related to DOM

scripting, keep the following in mind:

DOM 5 [a] Fi A A2 BIA Y 50 5% FH A AR B8 1 — 5B 43 AB R AR B I M7 52 L ECMAScript & 211k DOM 5
B, ERaw T B . > DOM ZRfE b ik ged gk, 1542 AT JL A

* Minimize DOM access, and try to work as much as possible in JavaScript.
/MK DOM i), 7F JavaScript iU 0] G 2 15 .

* Use local variables to store DOM references you'll access repeatedly.
T8 S S5 0] By 475 1 R 8 A2 B A7 DOM 51 .

* Be careful when dealing with HTML collections because they represent the live, underlying document. Cache
the collection length into a variable and use it when iterating, and make a copy of the collection into an array for

heavy work on collections.

NOHIALIE HTML 84, BB TR I AE7EtE”, RERRZE SO R &, 511 length B 1S
= AggE g, IR IR R MREF RIS, TSRS N2 +.

* Use faster APIs when available, such as querySelectorAll() and firstElementChild.
WA BERS, AF PR APL #5140 querySelectorAll()A firstElementChild.

* Be mindful of repaints and reflows; batch style changes, manipulate the DOM tree "offline," and cache and

minimize access to layout information.
EREZNEHR: HEEBHUE, BB DOM B, S A7 3 il A5 /e B .

* Position absolutely during animations, and use drag and drop proxies.

e SR C AR EAEP O ALY AN AR () A LS
 Use event delegation to minimize the number of event handlers.

I FAHEE SR B MR R .

FPIZE Algorithms and Flow Control FHiEFIR
FEFEE

The overall structure of your code is one of the main determinants as to how fast it will execute. Having a very
small amount of code doesn't necessarily mean that it will run quickly, and having a large amount of code doesn't
necessarily mean that it will run slowly. A lot of the performance impact is directly related to how the code has

been organized and how you're attempting to solve a given problem.

FRRD B AR S5) R PATHE R BB — S B AR—EiaiTH I, RS ELZ A — BT HEE.
PEBE B R S AR A ZU5 SO R A%] AR R ik AR K

The techniques in this chapter aren't necessarily unique to JavaScript and are often taught as performance
optimizations for other languages. There are some deviations from advice given for other languages, though, as
there are many more JavaScript engines to deal with and their quirks need to be considered, but all of the

techniques are based on prevailing computer science knowledge.

ARERARANGE T JavaScript WG T HALE FHPERMLIC . A —L800 Hithil S PRl i@, b
ALIHZ it JavaScript 518 & EATHIZE 7, (HIXEEEORHAR LS AT v LA URE2 FiRO 25l

Loops f&¥F

In most programming languages, the majority of code execution time is spent within loops. Looping over a
series of values is one of the most frequently used patterns in programming and as such is also one of the areas
where efforts to improve performance must be focused. Understanding the performance impact of loops in

JavaScript is especially important, as infinite or long-running loops severely impact the overall user experie

TERZHmMEES H, REPATHE 2 BEMA L. 7 — R g, R Az
—, RIS AL FCTE X 2 —. A% JavaScript TG PERERI SR X B E, KA IEIEIR
B K TEE AT AR IR & 7 5 5 2 AAEG

Types of Loops f&¥FKI12KHY

ECMA-262, 3rd Edition, the specification that defines JavaScript's basic syntax and behavior, defines four

types of loops. The first is the standard for loop, which shares its syntax with other C-like languages:

ECMA-263 #r#Esh —RUOME T JavaScript FIFEATEIRANAT A, € T WUMSSIIKMEIR . 58— AN EbRvER)
for &3, 53K C BT A RFERIEVE:

for (var i=0; i < 10; i++){

//1oop body

-

The for loop tends to be the most commonly used JavaScript looping construct. There are four parts to the for
loop: initialization, pretest condition, post-execute, and the loop body. When a for loop is encountered, the
initialization code is executed first, followed by the pretest condition. If the pretest condition evaluates to true,
then the body of the loop is executed. After the body is executed, the post-execute code is run. The perceived

encapsulation of the for loop makes it a favorite of developers.

for MM ML BB R JavaScript JEIAG K. EPURB AL FIGALAR, AT, JRAT A, 1835
& ZIBE| A for FEIAN, IR E SEhAT, WIGFENRTIIGAE . DR AT R EE RO true,
WIHATIEIAE . RGBT JERAT I for JRIAITEE E 1 HARIE 2 TT A B X R AL

The second type of loop is the while loop. A while loop is a simple pretest loop comprised of a pretest

condition and a loop body:

o “MEME while J53 . while IR — M) A TRIGR MRS, 1 — IR A AR — R A H 1 »

vari=0;

while(i < 10){

//1oop body

I+t

>

-

Before the loop body is executed, the pretest condition is evaluated. If the condition evaluates to true, then the
loop body is executed; otherwise, the loop body is skipped. Any for loop can also be written as a while loop and

vice versa.

FEMEMMARINAT Z 0T, 8 S B S AR T VR L R AR true, IS ARUSPATIRINA, & WIPEM 1K
PERBEIL . AEAT for AEIAARAT LAS B while 7E3, R ZIRIR.

The third type of loop is the do-while loop. A do-while loop is the only post-test loop available in JavaScript

and is made up of two parts, the loop body and the post-test condition:

BB =F IR AL do-while fi3f . do-while i3 & JavaScript HHME——F S MR IEIR, E AL P55 70 -
TR S MR A A A :

vari=0;
do {
//1oop body

' while (i++ < 10);

In a do-while loop, the loop body is always executed at least once, and the post-test condition determines

whether the loop should be executed again.

FE— do-while M, A S DIEAT IR, JRIIRGATHE MR AL 15 B R AAT

The fourth and last loop is the for-in loop. This loop has a very special purpose: it enumerates the named

properties of any object. The basic format is as follows:

FPUR R B J5— FEIAFE A for-in FE3A o IRAEIAA — D ARFRFRATAE: E AT ISR G i 4
JEME . HIEAKS A n

for (var prop in object){
//1oop body

}

Each time the loop is executed, the prop variable is filled with the name of another property (a string) that
exists on the object until all properties have been returned. The returned properties are both those that exist on the

object instance and those inherited through its prototype chain.

FRPEHIAT, BYERBHEA NG BMRZ S (D ERH) . BRI RN SRR T 5 A 1%
[0 35 [Py Je A A 358 0 5 PRSI 451 g PR AN e AN S PR R A A T R PR 2

Loop Performance fE¥EEE

A constant source of debate regarding loop performance is which loop to use. Of the four loop types provided

by JavaScript, only one of them is significantly slower than the others: the for-in loop.

TEIAPEBE 10 BT Sh 2 N 24 38 FWIRFR 3R . % JavaScript $2fL) PUAMEIR SR, U —F IR EL HAD
TEIRPH S EZ . for-in fE I .

Since each iteration through the loop results in a property lookup either on the instance or on a prototype, the
for-in loop has considerably more overhead per iteration and is therefore slower than the other loops. For the
same number of loop iterations, a for-in loop can end up as much as seven times slower than the other loop types.
For this reason, it's recommended to avoid the for-in loop unless your intent is to iterate over an unknown number
of object properties. If you have a finite, known list of properties to iterate over, it is faster to use one of the other

loop types and use a pattern such as this:

TR UORARER A E B B SE B R R B I, for-in FEI R UORARHR LA A BE Z 904, BT LA LL HoAth 2 7Y
PEIME 4L, TEEFERIIEFREARAED, for-in JEFFHLHABRTURIIEING 7 i 2. IR FEE DT
BRARUR T O B H AN RO SR AT R, & W AT for-in 35 . WSRAGEAGE I — M EIRE, B
SN R AL, AT AR AR AL ST PR, R Ak

var props = ["prop1", "prop2"],
1=0;
while (i < props.length){

process(object[props[i]]);

-

This code creates an array whose members are property names. The while loop is used to iterate over this small
number of properties and process the appropriate member on object. Rather than looking up each and every

property on object, the code focuses on only the properties of interest, saving loop overhead and time.

IEACHS B — A i B SN A4 1 BRI BA S« while 9830 FT738 732 JL A S AL B T X 2 R0 B2 i 3
AN I R E M. AR R BRI E I, 74 TR TR,

Aside from the for-in loop, all other loop types have equivalent performance characteristics such that it's not
useful to try to determine which is fastest. The choice of loop type should be based on your requirements rather

than performance concerns.

B for-in JEI AN, FABGEIASRAUVEGEAR 2, ECURRENR ORI SR o EFEAE PR SR N 75 SR A2

ok
Hg o

If loop type doesn't contribute to loop performance, then what does? There are actually just two factors:

WMREARRB GYERETE R, A mfTikEe? Hse RA PN ER:

* Work done per iteration

BROERT 4

* Number of iterations

ERVEM€ 14

By decreasing either or both of these, you can positively impact the overall performance of the loop.

W DR A EE CRIATI TR, AR AT DA S e i A) B A e

Decreasing the work per iteration J/D>EARKI THER

It stands to reason that if a single pass through a loop takes a long time to execute, then multiple passes
through the loop will take even longer. Limiting the number of expensive operations done in the loop body is a

good way to speed up the entire loop.

ANE T, AR — IR IEACTR BRI RIRSAAT, A4 2 RO 7 EE I IR o PRAGIFEAR A4 Py Bk
ATFE B AR B — IR A I 4 7 i

A typical array-processing loop can be created using any of the three faster loop types. The code is most

frequently written as follows:

IR R AR BEAE A, T = ORI AR TR B A RS B A W T

//original loops
for (var 1=0; 1 < items.length; i++){
process(items[i]);

§
var j=0;
while (j <items.length){

process(items[j++]]);

var k=0;
do {
process(items[k++]);

+ while (k <items.length);

In each of these loops, there are several operations happening each time the loop body is executed:

FERR M, BRIABATIRIMAHAREL R A A B LA

1. One property lookup (items.length) in the control condition

FEFE A A — KB (items.length)

2. One comparison (i < items.length) in the control condition

TEFHI A AT — X L (i < items.length)

3. One comparison to see whether the control condition evaluates to true (i<items.length==true)

PEBHRAE, SRFAT IR HE L RIEARE true (i < items.length == true)

4. One increment operation (i++)

—IKBNHEEE G+)

5. One array lookup (items[i])

—IREAHE R (items[i])

6. One function call (process(items][i]))

—IREAECH A (process(items[i]))

There's a lot going on per iteration of these simple loops, even though there's not much code. The speed at
which the code will execute is largely determined by what process() does to each item, but even so, reducing the

total number of operations per iteration can greatly improve the overall loop performance.

FEIR L] B EIA R, RIS R 2 (AS, BROA U S AT 2 8. AU T AR AR By
process()XF BEAIH HRAE AT E, RIME AL, sl D BEGE A AR K 2 AT LUOKIR 4R R A B AR PR e

The first step in optimizing the amount of work in a loop is to minimize the number of object member and
array item lookups. As discussed in Chapter 2, these take significantly longer to access in most browsers versus
local variables or literal values. The previous examples do a property lookup for items.length each and every time
through the loop. Doing so is wasteful, as this value won't change during the execution of the loop and is therefore
an unnecessary performance hit. You can improve the loop performance easily by doing the property lookuj

storing the value in a local variable, and then using that variable in the control condition:

YA AR 20— A D0 B G AN B A I A FR IR E . TE U030 2 TEAHB I, 78 K2 Ho s I,
REEGAR LY R A B H AR E R E TR . ARG 5 & R IEA A A 4K items length. X2 —FHR
2%, PUMZEAEENPATE R P A SR, B4 T ABERIPEBER k. IRA] AT S i (EAE N —
MEEBAR RN, TR EIRE AR N REARR, e s Tk gE:

//minimizing property lookups

for (var i=0, len=items.length; 1 < len; i++){
process(items[i]);

H

var j=0,

count = items.length;

while (j < count){
process(items[j++]]);

§

var k=0,

num = items.length;

do {
process(items[k++]);

+ while (k <num);

Each of these rewritten loops makes a single property lookup for the array length prior to the loop executing.
This allows the control condition to be comprised solely of local variables and therefore run much faster.
Depending on the length of the array, you can save around 25% off the total loop execution time in most browsers

(and up to 50% in Internet Explorer).

RS 5 I R IAT Z A B K AT — R I W R R R A RiEES
BEL, BrLCE . ARIEE IR, 7R R B g EARTT LA A K2 25% K BRI IR] (7E Internet

Explorer 7] 7744 50%)

You can also increase the performance of loops by reversing their order. Frequently, the order in which

items are processed is irrelevant to the task, and so starting at the last item and processing toward the first it

an acceptable alternative. Reversing loop order is a common performance optimization in programming languages
but generally isn't very well understood. In JavaScript, reversing a loop does result in a small performance

improvement for loops, provided that you eliminate extra operations as a result:

PRIE T LLE L B At TR 4 i AR e o B, AT R SRS %, IR ELA RS —
TP, HEMCESEH — oo BIP M EHIET 5 T I ERETL AL 7%, (H— Bk UL AR 2 2 B
£ JavaScript #', (BRI AT ARS SR S IR IR RE, R ELURIH BRIAL I A A MEAT -

//minimizing property lookups and reversing

for (var i=items.length; i--;){
process(items|[i]);

}

var j = items.length;

while (j--){
process(items[j]]);

}

var k = items.length-1;

do {
process(items[k]);

+ while (k--);

The loops in this example are reversed and combine the control condition with the decrement operation. Each
control condition is now simply a comparison against zero. Control conditions are compared against the value
true, and any nonzero number is automatically coerced to true, making zero the equivalent of false. Effectively,
the control condition has been changed from two comparisons (is the iterator less than the total and is that equal to
true?) to just a single comparison (is the value true?). Cutting down from two comparisons per iteration to one
speeds up the loops even further. By reversing loops and minimizing property lookups, you can see execution

times that are up to 50%-60% faster than the original.

Pl TEPEIS, RSB R A TiE . BRI R A i S F AT . {0 T
5 true ([EIATILEL, AEMTIEZHCT AEmEIEGOY true, MEER T false. SEhr b, FHIFM O

W GERD T RES? E5T true 152) DB — KK (BT true 15?2) o BB IR
B0 B R LOCE 38 S A . I B PRI R B MU B PR, ARaT LUE B AT 8 b R ah R
AT 50%-60%.

As a comparison to the originals, here are the operations being performed per iteration for these loops:

HIRAERASAIEL, B UGE A R T a8 4F

[u—

. One comparison (i == true) in the control condition

FEFEHIAAT AT — IR ER (L == true)

2. One decrement operation (i--)

—RIIERRAE G-

3. One array lookup (itemsl[i])

—RHA A Citems[i])

4. One function call (process(items]i]))

—IREAECH A (process(items][i]))

The new loop code has two fewer operations per iteration, which can lead to increasing performance gains as

the number of iterations increases.

BRI RS BRIGR A A, BEEE ARG I, R RERS 54T T

Decreasing the number of iterations JR/>IERIREL

Even the fastest code in a loop body will add up when iterated thousands of times. Additionally, there is a
small amount of performance overhead associated with executing a loop body, which just adds to the overall
execution time. Decreasing the number of iterations throughout the loop can therefore lead to greater perfor

gains. The most well known approach to limiting loop iterations is a pattern called Duff's Device.

B AR A B DR ARG, BRVHIEA TR (R AR o BUAh, RRUCEAT IR A A2k
—MRNPEBETTR, G R TIN TR] BEIA BRI BT IR AT S PR BEIRT T B AN
F PR AT AEACIR B AR R A I8 R BER

Duff's Device is a technique of unrolling loop bodies so that each iteration actually does the job of many
iterations. Jeff Greenberg is credited with the first published port of Duff's Device to JavaScript from its original

implementation in C. A typical implementation looks like this:

IERBS R —MERRITEAR, 7B —RIEF LS EHAT T 2 KIS EEE . Jeff Greenberg #71A K42
Bl RAGIA R GEH) C SEBUFEAE 2 JavaScript TR — N —DHBIF Sz .

//credit: Jeff Greenberg
var iterations = Math.floor(items.length / 8),
startAt = items.length % 8,
1=0;
do {
switch(startAt){
case 0: process(items[i++]);
case 7: process(items[it++]);
case 6: process(items[it++]);
case 5: process(items[it++]);
case 4: process(items[i++]);
case 3: process(items[i++]);
case 2: process(items[i++]);
case 1: process(items[i++]);
§
startAt = 0;

} while (--iterations);

The basic idea behind this Duff's Device implementation is that each trip through the loop is allowed a

maximum of eight calls to process(). The number of iterations through the loop is determined by dividing tt

number of items by eight. Because not all numbers are evenly divisible by eight, the startAt variable holds the
remainder and indicates how many calls to process() will occur in the first trip through the loop. If there were 12
items, then the first trip through the loop would call process() 4 times, and then the second trip would call

process() 8 times, for a total of two trips through the loop instead of 12.

B REATERREA ISR BUAEA Th Bl 8 Y process()Mi#L. A I IKECH 03 B LA
8o N BB —3E /& 8 MSEHLAE, BT LA startAt AR AT HUAREL, 15 H AR — WRAGHE N 4 30AT 2 /D IK process().
HOTBRAES 12 AR, AR RIEM A A process()4 ¥, 5 —IRIEM I I process()8 ¥k, I 2 Ikl
WARET 12 IRTEH .

A slightly faster version of this algorithm removes the switch statement and separates the remainder

processing from the main processing:

PESVE— NP RRARTUE T switch RIERX, K REME S EMEF 5T

//credit: Jeff Greenberg

var i = items.length % 8&;

while(1){
process(items[i--]);

H

1 = Math.floor(items.length / 8);

while(1){
process(items[i--]);
process(items[i--]);
process(items[i--]);
process(items[i--]);
process(items[i--]);
process(items[i--]);
process(items[i--]);

process(items[i--]);

Even though this implementation is now two loops instead of one, it runs faster than the original by removing

the switch statement from the loop body.
SIRIACE A TP MBI AR T SRR, (B 258 TR switch FIAS, WA R,

Whether or not it's worthwhile to use Duff's Device, either the original or the modified version, depends
largely on the number of iterations you're already doing. In cases where the loop iterations are less than 1,000,
you're likely to see only an insignificant amount of performance improvement over using a regular loop construct.
As the number of iterations increases past 1,000, however, the efficacy of Duff's Device increases significantly. At

500,000 iterations, for instance, the execution time is up to 70% less than a regular loop.
p g P

FEAE AL A R B, TR IR RRASIE S8 25U RORRAS, AR KRR BB IR ARR R B R A
INEACRED T 1000 4k, PRATAER A S 5 @A AR LL AT IR TERESE T . A RS AR Ao L
1'000 K, 5K B IR BT B 5000000 Yk, G247] HS @ AE Hhusk b 21 70%.

Function-Based Iteration T EEHIER

The fourth edition of ECMA-262 introduced a new method on the native array object call forEach(). This
method iterates over the members of an array and runs a function on each. The function to be run on each item is
passed into forEach() as an argument and will receive three arguments when called, which are the array item

value, the index of the array item, and the array itself. The following is an example usage:

ECMA-262 Ar#EE VYRR 41 T AHWECE X5 (1 — A8 7718 forBach(). M558 i — A M g i i
HAEA R EPAT— RS e T E EHATRIREAE N forBEachO S £ teidt 2, FHETR ARk =
MNSH, e BAE, BRG], RSB 5. TR AR

items.forEach(function(value, index, array){

process(value);

1)

The forEach() method is implemented natively in Firefox, Chrome, and Safari. Additionally, most JavaScrint

libraries have the logical equivalent:

forEach()B& ¥ ¥ Firefox, Chrome, #1 Safari 45 Eef%. A4, KZH JavaScript EH A S S HL -

//YUI 3

Y.Array.each(items, function(value, index, array){
process(value);

1);

//jQuery

jQuery.each(items, function(index, value){
process(value);

1);

//Dojo

dojo.forEach(items, function(value, index, array){
process(value);

1);

//Prototype

items.each(function(value, index){
process(value);

1);

//MooTools

$each(items, function(value, index){

process(value);

s

Even though function-based iteration represents a more convenient method of iteration, it is also quite a bit
slower than loop-based iteration. The slowdown can be accounted for by the overhead associated with an extra
method being called on each array item. In all cases, function-based iteration takes up to eight times as long as

loop-based iteration and therefore isn't a suitable approach when execution time is a significant concern.

RUEHT s B kA RAS SR, &b P2k TR kA EE e — 28, R HH I Z IR 1 R 2
ARG SO R A SR A FEFTATEOL N, Fe T eR HOr s A S IR (R AL TR AN s, T
FESAT IR L e RN — MR RN,

Conditionals £&H:RIEAR,

Similar in nature to loops, conditionals determine how execution flows through JavaScript. The traditional
argument of whether to use if-else statements or a switch statement applies to JavaScript just as it does to other
languages. Since different browsers have implemented different flow control optimizations, it is not always clear

which technique to use.

S5HEFAAML, SR E L HE JavaScript BATHINE R HARIE FALH if-else 243 switch RiA X LS
VWIE A T JavaScripte BTN [E OIS A8 RN IR AR E AT TANRIIALAL, AE R RO A 2

WS
i

Hﬁ

if-else Versus switch if-else 5 switch H.%¢

The prevailing theory on using if-else versus switch is based on the number of conditions being tested: the
larger the number of conditions, the more inclined you are to use a switch instead of if-else. This typically comes
down to which code is easier to read. The argument is that if-else is easier to read when there are fewer conditions

and switch is easier to read when the number of conditions is large. Consider the following:

] if-else 8L # switch FIPRAT IR 228 TR S E: SAFEERK, W T4 A switch TIA 2
if-else . 120 & U 45 BIACHD 1K) 2 ek o I RO sA Ay, T B S /I if-else 25) W3, T 4RI %) switch
BRI RN LA

if (found) {
//do something
} else {
//do something else
§
switch(found){
case true:
//do something
break;

default:

//do something else

Though both pieces of code perform the same task, many would argue that the if-else statement is much easier

to read than the switch. Increasing the number of conditions, however, usually reverses that opinion:

BRI ARG ELSIR RIS, RZ NS if-else KBk witch RIENXTERH 7 5. QLI g+
RECE, B S XA

if (color == "red"){
//do something
} else if (color == "blue") {
//do something
} else if (color == "brown"){
//do something
} else if (color == "black"){
//do something
} else {
//do something
§
switch (color){
case "red":
//do something
break;
case "blue":
//do something
break;
case "brown":
//do something
break;

case "black":

//do something
break;
default:

//do something

-

Most would consider the switch statement in this code to be more readable than the if-else statement.

KEZ BN AIX BRI A) switch FRIAF L if-else FEA AT H 1T,

As it turns out, the switch statement is faster in most cases when compared to if-else, but significantly faster
only when the number of conditions is large. The primary difference in performance between the two is that the
incremental cost of an additional condition is larger for if-else than it is for switch. Therefore, our natural
inclination to use if-else for a small number of conditions and a switch statement for a larger number of

conditions is exactly the right advice when considering performance.

UL, KREZHHIL T switch RiIEH L if-else R, (B R G4 ALEIR NN A4 B BB PiF R
L ZEREDCRAE T AR AN, if-else PEBETUHITINAFEE EL switch B2 . DI, FATHT A 2R 1
[EJ A 2 AR D I A] if-else 1110 4 A 445 22 IR AR switch ik 20, dn R AR BE T TIPS BB 2 IR«

Generally speaking, if-else is best used when there are two discrete values or a few different ranges of values
for which to test. When there are more than two discrete values for which to test, the switch statement is the most

optimal choice.

AR UL if-else 1AM > 8 AU (E B P I LA AN TR R (L. dn SRR 22 T 1B RIUE switch
RIE T T AR L

Optimizing if-else 4L if-else

When optimizing if-else, the goal is always to minimize the number of conditions to evaluate before taking the
correct path. The easiest optimization is therefore to ensure that the most common conditions are first. Consider

the following:

LAt if-else F) H AR B2 B MEFREIE R 70 SCZ AT AT A A P E AR RO RCR . B i) B R pi Ak vk e s B LI
FAHARTIAE G Lo 558 N] 5

if (value <5) {
//do something

} else if (value > 5 && value < 10) {
//do something

} else {

//do something

-

This code is optimal only if value is most frequently less than 5. If value is typically greater than or equal to 10,
then two conditions must be evaluated each time before the correct path is taken, ultimately increasing the average
amount of time spent in this statement. Conditions in an if-else should always be ordered from most likely to least

likely to ensure the fastest possible execution time.

IXEACHES A Y value (HEAH /N T S I A &M, WHE value &% K T27T 10, AR NIEHD
R, WIAPRIRIBEE AR, SEERE AN TR RS . if-else FISATARDY 2 5 2 14 IR B KRR 2
/MR PIFHEES, DARIE IR IS8T 1 bl o

Another approach to minimizing condition evaluations is to organize the if-else into a series of nested if-else
statements. Using a single, large if-else typically leads to slower overall execution time as each additional

condition is evaluated. For example:

TIHb Rl ST I RO 1 55 if-else ZHSUR — RIIREN if-else ik o AL — M HAA)—K
Y if-else W H SEUSITENE, FOVRNFAHAMESIH . Bll.

if (value == 0){
return resultO;

} else if (value == 1){
return resultl;

} else if (value == 2){

return result2;

} else if (value == 3){
return result3;

} else if (value == 4){
return result4;

} else if (value == 5){
return result5;

} else if (value == 6){
return resulto;

} else if (value == 7){
return result7;

} else if (value == 8){
return result8;

} else if (value == 9){
return result9;

} else {

return result10;

With this if-else statement, the maximum number of conditions to evaluate is 10. This slows down the average
execution time if you assume that the possible values for value are evenly distributed between 0 and 10. To
minimize the number of conditions to evaluate, the code can be rewritten into a series of nested if-else statements,

such as:

TERA if-else Tk, Bt B4R BREH 2 10 WRIE value FI(ETE 0 2] 10 Z RIS 73 A,
AL BIEAT I T8 o O T b 4R S, AR AT 5) — R AR ER] if-else Tk 3, B

if (value < 6){
if (value <3){
if (value == 0){

return resultO;

} else if (value == 1){
return resultl;
}else {
return result2;
H
}else {
if (value == 3){
return result3;
} else if (value == 4){
return result4;
}else {
return result5;
H
H
}else {
if (value < 8){
if (value == 6){
return result6;
}else {
return result7;
H
}else {
if (value == 8){
return result8;
} else if (value == 9){
return result9;
}else {
return result10;

}

-

-

The rewritten if-else statement has a maximum number of four condition evaluations each time through. This is
achieved by applying a binary-search-like approach, splitting the possible values into a series of ranges to check
and then drilling down further in that section. The average amount of time it takes to execute this code is roughly
half of the time it takes to execute the previous if-else statement when the values are evenly distributed between 0
and 10. This approach is best when there are ranges of values for which to test (as opposed to discrete values, in

which case a switch statement is typically more appropriate).

FEH G if-else RIEA A, R IHRIE EM 70 3N 22 0 DU G AR . EAT A 7 JR 32K (0 B
T RPIXIA, RIFEDA N AU E 2 ATAE 0 2 10 1, BLACH P8 3a AT I [/ K242 A T AR
ARRAS o ITEE TR I K EBE O X EUE R switch E&E)

Lookup Tables &

Sometimes the best approach to conditionals is to avoid using if-else and switch altogether. When there are a
large number of discrete values for which to test, both if-else and switch are significantly slower than using a
lookup table. Lookup tables can be created using arrays or regular objects in JavaScript, and accessing data from a
lookup table is much faster than using if-else or switch, especially when the number of conditions is large (see

Figure 4-1).

AL L B A] if-else BY switcho 43 K& B ECE T ZLMARS , if-else A switch #f LA H £ 583%
2194 . 7F JavaScript AR IE AT A B S IE X Z LI, A RIETT M B L if-else 5 # switch B
P, FERU SRR H AR Canil 4-1)

180
175 - e
170 - | e
165 | ;

160

155 4 e

Tirme (ms) per 50,000 uns

150

145

140 T T T T T T T T T T 1

1 2 3 4 5 6 7 g 9 10 n
Humber of conditions

Ifstatement == Switch statement == Array lookup

Figure 4-1. Array item lookup versus using if-else or switch in Internet Explorer 7

] 4-1 Internet Explorer 7 H 4720 1] 55 if-else 5X switch [FLEE

Lookup tables are not only very fast in comparison to if-else and switch, but they also help to make code more
readable when there are a large number of discrete values for which to test. For example, switch statements start

to get unwieldy when large, such as:

Y if-else M1 switch AHEL, EREACARR YL, 1M H & 2NN & BEECE AR N, A B RN
FRFT . B, 4 switch ik AR KN AR E, 1% .

switch(value){

case 0:

return resultO;
case 1:

return resultl;
case 2:

return result2;
case 3:

return result3;

case 4:

return result4;
case 5:

return result5;
case 0:

return resulto;
case 7:

return result7;
case &:

return result8;
case 9:

return result9;
default:

return result10;

The amount of space that this switch statement occupies in code is probably not proportional to its importance.

The entire structure can be replaced by using an array as a lookup table:

switch FIE AT I v i) 22 18] T e 5 & B SR AN e b) 8 SR v LU — N AR A

//define the array of results
var results = [result0, resultl, result2, result3, result4, resultS, result6, result7, result8, result9, result10]
//return the correct result

return results[value];

When using a lookup table, you have completely eliminated all condition evaluations. The operation becomes
either an array item lookup or an object member lookup. This is a major advantage for lookup tables: since there

are no conditions to evaluate, there is little or no additional overhead as the number of possible values increases.

AT ERVER, AE 2 HERIT A &AW o AR Ee s N A B N G . 8
HERIER D EE RS BT &, AiaEESEne, R0, SR gmaish Tt ae
TFH o

Lookup tables are most useful when there is logical mapping between a single key and a single value (as in the
previous example). A switch statement is more appropriate when each key requires a unique action or set of

actions to take place.

BRAERE M T— N ME T BGOZ ARWST BOU CRTRTTE B 1) « —A> switch Rk HEE & TR
R SRS, B RIS RS G

Recursion 34

Complex algorithms are typically made easier by using recursion. In fact, there are some traditional algorithms

that presume recursion as the implementation, such as a function to return factorials:

RO LA S A RE N SE. st b, ARG R LURIHSEILR, b sfe s 45

function factorial(n){
if (n==0){
return 1;
} else {
return n * factorial(n-1);

}

-

The problem with recursive functions is that an ill-defined or missing terminal condition can lead to long

execution times that freeze the user interface. Further, recursive functions are more likely to run into browser call

stack size limits.

AR B RS, MR IRE N BE D R A] S ECK I RE AT, RE T A SeAh, I
BRI HE 2 1 210 b s A P AR R /N B PR

Call Stack Limits &[R4l

The amount of recursion supported by JavaScript engines varies and is directly related to the size of the
JavaScript call stack. With the exception of Internet Explorer, for which the call stack is related to available
system memory, all other browsers have static call stack limits. The call stack size for the most recent browser
versions is relatively high compared to older browsers (Safari 2, for instance, had a call stack size of 100). Figure

4-2 shows call stack sizes over the major browsers.

JavaScript 5| AT LR A2 E 5 JavaScript P A KD B A K. R Internet Explorer #1475, &1
PWHARS W H ARG NAEAE I, HAR S 3815 [5 R AR FR . K2 B0 BE 28 1 AR R <) b 22]
UEESEE K () Safari 2 AR R ST 100) o & 4-2 o H R B N g R AR KD .

4000 11
35,000 4
30,000 1
25,000 4
n837 nay
20,000 ' '

15,000

Call stack sie

10,000 10,000

10,000
vy 223

. Ol [i o
% S

T

ﬁ*ﬁfﬁﬁﬁﬁﬁﬁ
Pl

Figure 4-2. JavaScript call stack size in browsers

Bl 4-2 3% 28$H JavaScript 1A AT

When you exceed the maximum call stack size by introducing too much recursion, the browser will error out

with one of the following messages:

BRI TRZ A, BRI I, S as & AR RS LU 5 R

* Internet Explorer: “Stack overflow at line x”

¢ Firefox: “Too much recursion”

 Safari: “Maximum call stack size exceeded”

* Opera: “Abort (control stack overflow)”

Chrome is the only browser that doesn't display a message to the user when the call stack size has been

exceeded.

Chrome 2 ME— A 5 7 10 FH A v H B 1% A0 e 4 o

Perhaps the most interesting part of stack overflow errors is that they are actual JavaScript errors in some
browsers, and can therefore be trapped using a try-catch statement. The exception type varies based on the
browser being used. In Firefox, it's an InternalError; in Safari and Chrome, it's a RangeError; and Internet
Explorer throws a generic Error type. (Opera doesn't throw an error; it just stops the JavaScript engine.) This

makes it possible to handle such errors right from JavaScript:

KT HER, RS NEBXGBRRE D KM E3EEe S as ., AT a2 JavaScript #51%, A
AR — try-catch IR T KRB SR M A Ao 7E Firefox o, & /& —> InternalError; 7& Safari
F1 Chrome #, ‘& &> RangeError; 7E Internet Explorer 4l —A>— ML ¥ Error 287!, (Opera AN H!

iR ek JavaScript 5158) o X1 IATEENSAE JavaScript H IF AL I X LEEE 1R :

try {

recurse();
} catch (ex){

alert("Too much recursion!");

-

If left unhandled, these errors bubble up as any other error would (in Firefox, it ends up in the Firebug and
error consoles; in Safari/Chrome it shows up in the JavaScript console), except in Internet Explorer. IE will not
only display a JavaScript error, but will also display a dialog box that looks just like an alert with the stack

overflow message.

,—'—»

WRAEE, Ba R 5 A A R — e B _bAE (FF Firefox &1, ‘&/45 W T Firebug F4l % 43,
7F Safari/Chrome "' {2 7R 7F JavaScript 235) , A Internet Explorer #4b. IE A4 78— JavaScript

Biix, (R MR R R SR EAE.

Recursion Patterns i 95,

When you run into a call stack size limit, your first step should be to identify any instances of recursion in the
code. To that end, there are two recursive patterns to be aware of. The first is the straightforward recursive pattern

represented in the factorial() function shown earlier, when a function calls itself. The general pattern is as follows:

AARBEN T A RS BRI, 28— NAZSE A AR AR T i A S8 o Sk, A AN ISR ERE R
R ELAEE A R I AT TR 21K factorial O EL, B —ANEORA A S . H—gBlin .

function recurse(){

recurse();
§

recurse();

This pattern is typically easy to identify when errors occur. A second, subtler pattern involves two functions:
BRARN, R e e Ao — AR O TG, S A R

function first(){
second();

§

function second(){

first();
H

first();

In this recursion pattern, two functions each call the other, such that an infinite loop is formed. This is the more

troubling pattern and a far more difficult one to identify in large code bases.

FEIXM BB, PR BB AT, RN IERRAE M . IR — A AR IR, AR KRR
B2 A R AR AR PR A o

Most call stack errors are related to one of these two recursion patterns. A frequent cause of stack overflow is
an incorrect terminal condition, so the first step after identifying the pattern is to validate the terminal condition. If
the terminal condition is correct, then the algorithm contains too much recursion to safely be run in the browser

and should be changed to use iteration, memoization, or both.

REHOHAIRAT R SRR — A 50 W ILAOH R LR — D ANIER I 2020, BT BUE A7
IR — DR RIEE R E e MRS LA R IEHN, RS TRZZRIBIA, A THEBZ T
WA AT, PMEEUTIE, HIER, BRI AL .

EHE: memoization, ET, FURIXANEHRIE, FEAHIR?, AL memorization !

memoization, X FR tabulation, JE B #ERE FH tab 4.

JRIEE TR, S 2, AU MR ERRIE IR EER, MR E S L, A

HAEMNEARK A UERIFRGER, AL EEH.

Iteration &A%

Any algorithm that can be implemented using recursion can also be implemented using iteration. Iterative
algorithms typically consist of several different loops performing different aspects of the process, and thus
introduce their own performance issues. However, using optimized loops in place of long-running recursive
functions can result in performance improvements due to the lower overhead of loops versus that of executing a

function.

AT AT LU 8 A e B EE A T LUDEACSE B o IR AUEE I B LA FRIE IS, 20 50x N AEL R
WA T, e SEUA CRPEREN AL, (B0, A A OLAL PRI A IR TR AT 38 U9 ol 0T LAZR ik
PRI AT — MBI L R A — > s B TF AR K.

As an example, the merge sort algorithm is most frequently implemented using recursion. A simple Jave

implementation of merge sort is as follows:

B, & AR L o LA N SE I S5 . —MR]#L) JavaScript SEILRI & FFHERPSELEDT R

function merge(left, right){
var result = [];
while (left.length > 0 && right.length > 0){
if (left[0] < right[0]) {
result.push(left.shift());
} else {
result.push(right.shift());
§
H
return result.concat(left).concat(right);
§
function mergeSort(items){
if (items.length == 1) {
return items;
H
var middle = Math.floor(items.length / 2),
left = items.slice(0, middle),
right = items.slice(middle);

return merge(mergeSort(left), mergeSort(right));

The code for this merge sort is fairly simple and straightforward, but the mergeSort() function itself ends up
getting called very frequently. An array of n items ends up calling mergeSort() 2 * n —1 times, meaning that an

array with more than 1,500 items would cause a stack overflow error in Firefox.

XA IR AR 2 B L H B, {22 mergeSort() B 204 A FEHME . — N EHA n NI EE B 2EH
F mergeSort()id 2 * n- 1 ¥k, WELAUL, X— AT 1500 MU EHEAE, T BETE Firefox 52tk
H.

Running into the stack overflow error doesn't necessarily mean the entire algorithm has to change; it simply
means that recursion isn't the best implementation. The merge sort algorithm can also be implemented using

iteration, such as:

FEFFBE AR BRI — B BB ERREWREE AR FSEI 5. & HFHP R
AT ELATEACSEIL, Wk

//uses the same mergeSort() function from previous example
function mergeSort(items){
if (items.length == 1) {
return items;
§
var work = [];
for (var i=0, len=items.length; i <len; i++){
work.push([items][i]]);
§
work.push([]); //in case of odd number of items
for (var lim=len; lim > 1; lim = (lim+1)/2){
for (var j=0,k=0; k < lim; j++, k+=2){

work[j] = merge(work[k], work[k-+1]);

H

work[j] =[]; //in case of odd number of items
H
return work[0];

This implementation of mergeSort() does the same work as the previous one without using recursion.
Although the iterative version of merge sort may be somewhat slower than the recursive option, it doesn't have the
same call stack impact as the recursive version. Switching recursive algorithms to iterative ones is just one of the

options for avoiding stack overflow errors.

1 mergeSort() S - AT T 1 & 250 SE B RJAE Dy B 1 v A3 A 88 U9 o BB ARIRACREAS (45 - HE e vl RE EL i U Al
AE L8, (EEA G T RRASAFE M A RS A S D o S AU R e Ml AR I A2

o

Memoization

Work avoidance is the best performance optimization technique. The less work your code has to do, the faster
it executes. Along those lines, it also makes sense to avoid work repetition. Performing the same task multiple
times is a waste of execution time. Memoization is an approach to avoid work repetition by caching previous

calculations for later reuse, which makes memoization a useful technique for recursive algorithms.

D TAF RS B I PERETE AL BOR . AR B S5 D, e T B . AR L), e
REE TAFRRAEX. ZXRPITHREIRESBAER TR G2, W A R i v A4 30 Ja sevt- Fpr
BRG], #h TEE T, RAERHERBCOYE N AR A ISR,

When recursive functions are called multiple times during code execution, there tends to be a lot of work
duplication. The factorial() function, introduced earlier in "Recursion" on page 73, is a great example of how

work can be repeated multiple times by recursive functions. Consider the following code:

MBIHR L IR, B TAEIRZ . 1F factorial BRELT (FERTTHIAM ALY Rtk D , £—
B RR R R 2 R . SRR I ARG .

var fact6 = factorial(6);
var fact5 = factorial(5);

var fact4 = factorial(4);

This code produces three factorials and results in the factorial() function being called a total of 18 times. The
worst part of this code is that all of the necessary work is completed on the first line. Since the factorial of 6 is
equal to 6 multiplied by the factorial 5, the factorial of 5 is being calculated twice. Even worse, the factorial of 4 is
being calculated three times. It makes far more sense to save those calculations and reuse them instead of starting

over anew with each function call.

IR AR = o4t R, factorial()pf £ IEHEHA 77 18 . MACH R ERAIEERIEE A2, BT L 2211
TR B2 AT AT 7 U 6 BIBTSRSE T 6 FLL 5 [1F 3, BTLL 5 Mgt 5 7 k. &
RRERIE, 4 MR 5 7 =R NI BB RSP A e FER, AR RAE
VAL R L

You can rewrite the factorial() function to make use of memoization in the following way:

PRu] LU FH R B AR SR S factorial EA L, WIT:

function memfactorial(n){

if (!memfactorial.cache){

memfactorial.cache = {
"o 1,

lllll: 1

H
if (!memfactorial.cache.hasOwnProperty(n)) {

memfactorial.cache[n] = n * memfactorial (n-1);
§

return memfactorial.cache[n];

-

The key to this memoized version of the factorial function is the creation of a cache object. This object is
stored on the function itself and is prepopulated with the two simplest factorials: 0 and 1. Before calculating a
factorial, this cache is checked to see whether the calculation has already been performed. No cache value means
the calculation must be done for the first time and the result stored in the cache for later usage. This function is

used in the same manner as the original factorial() function:

TR A P AR B A R B 3R o B Sl R A M EAE R B e G TR B, TR 1 A B TR A
[afe: 0 F0 1. FEVEMIRZAT, HRR G TS A EMMNITH G R B X Mg P Ut
I 3 — YA T LB T B, MRS SR AE RN AL 2T, DL A R . IheR 35 R
1) factorial() e £ FHEAH R -

var fact6 = memfactorial(6);
var fact5 = memfactorial(5);

var fact4 = memfactorial(4);

This code returns three different factorials but makes a total of eight calls to memfactorial(). Since all of the
necessary calculations are completed on the first line, the next two lines need not perform any recursion because

cached values are returned.

IEAREE IR [l = A AR BB e, H R HI A memfactorial VB AL/ \iK . BESRATH LZE 0 THEARTE S —
TR 5ERL 1, AR ATAUE AN S A 5, DD HRGR [0l 2247 i H(E .

The memoization process may be slightly different for each recursive function, but generally the same pattern
applies. To make memoizing a function easier, you can define a memoize() function that encapsulates the basic

functionality. For example:

Tl sk R DR s VA B 50 BT AN [R), (ELEVAR B B AR R A O TAE— s RS AR A 5
YRA] LLSE XL—> memoize() B F R AR TN RE . 4

function memoize(fundamental, cache){
cache = cache || {};
var shell = function(arg) {
if (!cache.hasOwnProperty(arg)){
cache[arg] = fundamental(arg);
}
return cache[arg];
s

return shell;

This memoize() function accepts two arguments: a function to memoize and an optional cache object. The
cache object can be passed in if you'd like to prefill some values; otherwise a new cache object is created. A shell
function is then created that wraps the original (fundamental) and ensures that a new result is calculated on

has never previously been calculated. This shell function is returned so that you can call it directly, such as:

It memoize() BRI HHEN S H: — A FHERBIR K s ZOMN — AN TE ISR R o WRARIT P — L5,
MAFAN—DTVE LEAEXT G SRR MRS S REEE MMeR i, fRbh s
(fundamential) ®FGEK, BifR R — NILETNRBT SEE IEAAE AN A BT AL TH A R
VRSP FE R BORIF], fRAT LLEER A e, B

//memoize the factorial function

var memfactorial = memoize(factorial, { "0": 1,"1": 1 });
//call the new function

var fact6 = memfactorial(6);

var fact5 = memfactorial(5);

var fact4 = memfactorial(4);

Generic memoization of this type is less optimal that manually updating the algorithm for a given function
because the memoize() function caches the result of a function call with specific arguments. Recursive calls,
therefore, are saved only when the shell function is called multiple times with the same arguments. For this reason,
it's better to manually implement memoization in those functions that have significant performance issues rather

than apply a generic memoization solution.

A R s B S N TSR AR ELOL AR D, A memoize() R B2 1765 5E 2 210 o8 K0 T 45 3L
AU AR — 2 5 2 O L Ah S s BN A BETT £ IR TR (Uil I RO Fe s B BRI A7 e U, AR A A
PRI BE RS R e A5 R 7D o B, BB RER R B BB RE RN, IR
Sep B N TSEIHIRRE

Summary & %5

Just as with other programming languages, the way that you factor your code and the algorithm you choose
affects the execution time of JavaScript. Unlike other programming languages, JavaScript has a restricted set of

resources from which to draw, so optimization techniques are even more important.

IEmHARGRIEE S, AR BV EEE 520 JavaScript FIIE4TH [A]. 5 HAth g2 15 5 AT A2,
JavaScript if HZJEA M, FrLL e R h B2

* The for, while, and do-while loops all have similar performance characteristics, and so no one loop type is

significantly faster or slower than the others.

for, while, do-while fEFFITEBERFIEARMRL, WA LL ERE PREVES .

¢ Avoid the for-in loop unless you need to iterate over a number of unknown object properties.

BRAEARZLE AR — R IEAR RN 5, HIWAZAEH for-in 1834

* The best ways to improve loop performance are to decrease the amount of work done per iteration and decrease

the number of loop iterations.

PRI BE R B I AN R D RGN s e, IR DRI L

* Generally speaking, switch is always faster than if-else, but isn’t always the best solution.

— MR, switch B 2L if-else BEHR, (HFHA S IE R IR 7k,

* Lookup tables are a faster alternative to multiple condition evaluation using if-else or switch.

MBI A 2, A RVE L ifelse B switch Bl .

* Browser call stack size limits the amount of recursion that JavaScript is allowed to perform; stack overflow

errors prevent the rest of the code from executing.

5 s AU AR RS BRABI 1 338 R 95 7E JavaScript ARG T Ml 8 iR S SO WANBE IEH AT .

* If you run into a stack overflow error, change the method to an iterative algorithm or make use of memoization

to avoid work repetition.

WRARIB R R TR, KRB SO SRR S T R T DO e R T AR

The larger the amount of code being executed, the larger the performance gain realized from using these

strategies.

BATHACHE SR, AT AT LE S B SR IV BE S T B A .

#FhE Strings and Regular Expressions FF &
A IE 23k 5K

Practically all JavaScript programs are intimately tied to strings. For example, many applications use Ajax to
fetch strings from a server, convert those strings into more easily usable JavaScript objects, and then generate
strings of HTML from the data. A typical program deals with numerous tasks like these that require you to merge,
split, rearrange, search, iterate over, and otherwise handle strings; and as web applications become more complex,

progressively more of this processing is done in the browser.

JL A JavaScript 12 /5405 257 SR AR SRARE 9 4, VR 2 N R T Ajax MR 8528 SRELCA A5 57
RFIZ L 15 H e W S 2 FH) JavaScript X5, 2R JA AEHE AR HTML P78 . — R e R 2 Ak
HRTRENES, &, o, s, 82, B, UUARHAELHE TR $. B M TN TR
R, HORBE B SR 550 78 3 B 4% e il

In JavaScript, regular expressions are essential for anything more than trivial string processing. A lot of this
chapter is therefore dedicated to helping you understand how regular expression engines internally process your

strings and teaching you how to write regular expressions that take advantage of this knowledge.

£ JavaScript 1, ENRIERSELAT IR, © R E I B AT A A AR E AT A Y
Tl B T AR E MR 3 | AL PP 77 R S B, RO g A IR e AR TE R A 5.

Also in this chapter, you'll learn about the fastest cross-browser methods for concatenating and trimming
strings, discover how to increase regex performance by reducing backtracking, and pick up plenty of other tips

and tricks for efficiently processing strings and regular expressions.

AR, FOLRKFEROCTIER., BB TR R BRIER s %, W im i ml b PRIk 32
EENFGEIVERE, JFPRE 1 — L2850 T M RAC 745 B A E R SN B 7

String Concatenation FfF 58 ER

String concatenation can be surprisingly performance intensive. It's a common task to build a string by
continually adding to the end of it in a loop (e.g., when building up an HTML table or an XML document), but

this sort of processing is notorious for its poor performance in some browsers.

TR HERSR I IR A RIERE R k. TR —MES T — MEM, [PR H R BRI A R, K el
AR (i, G2 A HTML RE# —> XML SCRD |, (R e — 0] 55 35 R IORRE T
NI

So how can you optimize these kinds of tasks? For starters, there is more than one way to merge strings (see

Table 5-1).

AVREREACIERAE SR ? B8, A2 MRS IR 7S (RS- .

Table 5-1. String concatenation methods

RS-1 PRI R

Method Example
The + operator str = "a" + "b" + "c";
The += operator str = "a";
str += “b";
str += "c”;
array.join() str= ["a", "B", "c"].join("");

[

string.concat{) str = "a":

str = str.concat("b", "c"};

All of these methods are fast when concatenating a few strings here and there, so for casual use, you should go
with whatever is the most practical. As the length and number of strings that must be merged increases, however,

some methods start to show their strength.

ERDR PR, AR R IR R, RN RO, AR RGE R . BA I A R
BRI)G, ALmBoT st B orEdl.

Plus (+) and Plus-Equals (+=) Operators JIFTINETH#4E

These operators provide the simplest method for concatenating strings and, in fact, all modern browsers except
IE7 and earlier optimize them well enough that you don't really need to look at other options. However, several

techniques maximize the efficiency of these operators.

KA M TR T AT BB (R B, LB, BR IE7 VS Z BT R AT A DG S E A e 1R
Wt PrUMRA TR G HAD i R, A7 SR ART DR KRR B e iy IR SR R A R

First, an example. Here's a common way to assign a concatenated string:
T, BT REEE TR RE S
str += "one" + "two";
When evaluating this code, four steps are taken:
AU AT IR, R AU E
1. A temporary string is created in memory.
WAEF AN T — NI PR .
2. The concatenated value "onetwo" is assigned to the temporary string.
I e 745 ER B T “onetwo ™
3. The temporary string is concatenated with the current value of str.
&I AR 5 str {BERE T 42
4. The result is assigned to str.

ERIRT stro

This is actually an approximation of how browsers implement this task, but it's close.

REEA Bl A S O —E 5 1R

The following code avoids the temporary string (steps 1 and 2 in the list) by directly appending to str using

two discrete statements. This ends up running about 10%—40% faster in most browsers:

I A ARG I A B A I A A INAE str EiE R TR EAF R (RmAIRR e 1 BRI 2
o FERZH S FIXFES AT IR 10%-40%:

str += "one";

str += "two";

In fact, you can get the same performance improvement using one statement, as follows:

SEhr b, AR A — AT AR S se SO AR R PR RELR T, T

str = str + "one" + "two'";

// equivalent to str = ((str + "one") + "two")

This avoids the temporary string because the assignment expression starts with str as the base and appends
one string to it at a time, with each intermediary concatenation performed from left to right. If the concatenation
were performed in a different order (e.g., str = "one" + str + "two""), you would lose this optimization. This is
because of the way that browsers allocate memory when merging strings. Apart from IE, browsers try to expand
the memory allocation for the string on the left of an expression and simply copy the second string to the end of it
(see Figure 5-1). If, in a loop, the base string is furthest to the left, you avoid repeatedly copying a progressively

larger base string.

ot e TGN AR, ROAGUERIE A TT K LA str MEERE, —XIEIN— 758, WAL
R WRMAREET (Fl, str="one" +str+ "two") , K&K FXFAL. K G WA T E
A AEITTEA K B IE LISh, S SEas SRy RIS e i A7 BB B A7, SR TR B o — AN
FrEPE LEIE R A (AN 5-10 o WSRAE— MR, BEARTFPRT B AL T e, sl LARE 22 (2] —
KR FEA AT H

31 ="pne";
s2="two"; ¢
=248 | cad 1}
- : J R i)
l—n 5 ——————————h
53 »

Figure 5-1. Example of memory use when concatenating strings: sl is copied to the end of s2 to create s3; the base

string s2 is not copied

B 5-1 BT BN NI s1 BH12) 2 WREEIEA 3: FEATAT R $2 Wi &l

These techniques don't apply to IE. They have little, if any, effect in IE§ and can actually make things slower
in IE7 and earlier. That's because of how IE executes concatenation under the hood. In IE8's implementation,
concatenating strings merely stores references to the existing string parts that compose the new string. At the last
possible moment (when you actually use the concatenated string), the string parts are each copied into a new
"real" string, which then replaces the previously stored string references so that this assembly doesn't have to be

performed every time the string is used.

REERCARIEAGEH T B ENYLPRAEMAEM, 76 1E8 R 2 IE7 MEMRATE . X5 B 44T
BEFERERINUEIG G, 75 IE8 b, R4 s FUR il MM TR B 0 PR SR g L . TR S I
Z0 CHREEARHERG TR, 2300 PR A A R A B B2 55 80, K5
FEBACERTRI ARSI, BT AR AR SRR S I 2 4 B8 I O AR 45 R

IE7 and earlier use an inferior implementation of concatenation in which each pair of concatenated strings
must always be copied to a new memory location. You'll see the potentially dramatic impact of this in the
upcoming section "Array Joining". With the pre-IE8 implementation, the advice in this section can make things
slower since it's faster to concatenate short strings before merging them with a larger base string (thereby avoiding
the need to copy the larger string multiple times). For instance, with largeStr = largeStr + s1 + s2, I[E7 and earlier
must copy the large string twice, first to merge it with s1, then with s2. Conversely, largeStr += s1 + s2 first
merges the two smaller strings and then concatenates the result with the large string. Creating the intermedi:

string of s1 + s2 is a much lighter performance hit than copying the large string twice.

TE7 158 5L 30 b s 7E 1 1 74 0 I SRR I s BT v, B — X A SR AR BT e TR 21— B
WIS o URfE R A B R T R B EBFE B RN . #EX) TE8 Z AT Hse Bl i, A&
TR A N, RO E I 2 MR TR O — DR PR P G 22 I F8 DU K7 4
) o B, largeStr = largeStr +s1 +s2 5], 78 IE7 RS B RRA A, S0 KE 5 5 45 DU K,
HoeE sl A, RIEFS 2 &F. MR, largeStr=s1 +s2 SR BN ERFR G IRRR, REKERIR
[PIZ KP4 BT IRFAT 5 sl +s2 5P KA R ARLL, PRREm i 28R 2.

Firefox and compile-time folding Firefox Fl1471%¥ #1453

When all strings concatenated in an assignment expression are compile-time constants, Firefox automatically

merges them at compile time. Here's a way to see this in action:

TERE B P A AT AR R T2 e &, Firefox HEMEgm SR &R 8. KHEA—
ATET R B L

function foldingDemo() {
var str = "compile" + "time" + "folding";
str += "this" + "works" + "too";
str = str + "but" + "not" + "this";

H

alert(foldingDemo.toString());

// In Firefox, you'll see this:

// function foldingDemo() {

/| var str = "compiletimefolding";
/I str += "thisworkstoo";

/I str=str+ "but" + "not" + "this";

/)

When strings are folded together like this, there are no intermediary strings at runtime and the time and
memory that would be spent concatenating them is reduced to zero. This is great when it occurs, but it does:

very often because it's much more common to build strings from runtime data than from compile-time const

PR RIREG IR R, s AT AT TR R AT A BT LU E AT I TRURT P9 A7 R LA D 2 %
RAThRENER 7 AV, (Bt A ERAER, BUYIEHE AISAT HIEE QI 747 B A2 WG R &

Array Joining FZH B4

The Array.prototype.join method merges all elements of an array into a string and accepts a separator string
to insert between each element. By passing in an empty string as the separator, you can perform a simple

concatenation of all elements in an array.

Array.prototype join JFiEEH AN A LR A IR — N ER R, HEBNTRZBA 7R
o WRAEE DT PR RN PR, URAT LR S S R BT B LR IR R R

Array joining is slower than other methods of concatenation in most browsers, but this is more than

compensated for by the fact that it is the only efficient way to concatenate lots of strings in IE7 and earlier.

FERZH s B, BAURE OER 7 A7 8 I Al i 5, (BRFHSC L, h—MaMErik, 78 IE7T M
SR S R R A SR iR A

The following example code demonstrates the kind of performance problem that array joining solves:

N R B GRS 1R E R I A R AR R i A

var str = "I'm a thirty-five character string.",
newStr=""
appends = 5000;
while (appends--) {

newStr += str;

-

This code concatenates 5,000 35-character strings. Figure 5-2 shows how long it takes to complete this test in

IE7, starting with 5,000 concatenations and then gradually increasing that number.

AR IERE 5'000 MK R 35 IR . B 5-2 Bon HTE IE7 FHAT AR psa], M 5'00
Potah, REE NG,

12,352

E
15,537
E

5,000 3,955
126

5,000 : 10,000 : 1B000 20,000
Appends

Figure 5-2. Time to concatenate strings using += in [E7

Kl 5-2 1E7 Wi A= 852155 5 BT B g Tl

IE7's naive concatenation algorithm requires that the browser repeatedly copy and allocate memory for larger

and larger strings each time through the loop. The result is quadratic running time and memory consumption.

1E7 RE RIS ORI i as AE MR RS A e R MR ORI 775 5 3% DN E A A7 45 RELL-F
Ji R A BRI ATIN R AN A AETH R

The good news is that all other modern browsers (including 1E8) perform far better in this test and do not
exhibit the quadratic complexity that is the real killer here. However, this demonstrates the impact that seemingly
simple string concatenation can have; 226 milliseconds for 5,000 concatenations is already a significant
performance hit that would be nice to reduce as much as possible, but locking up a user's browser for more than

32 seconds in order to concatenate 20,000 short strings is unacceptable for nearly any application.

T BRI A HARRIBLAGR W% (46 1E8) TR MM PRI R af, AaBIF 7 R AR E Aebhid
R FIERGR TR R, BURERREs 1 DU S0 74 I BT AL IR . 5'000 JGEREHT 2 226
Mo PN RFERTEREM T 1) PR REMAEEX R, (E0E e Kk 32 8, K2k
TR 200000 NMEFFTH, W AEAT Y F R R AR A S AN BEFE A H o

Now consider the following test, which generates the same string via array joining:

DUAEZ5 RN IR, e A B A5 A R B 1 A

var str = "I'm a thirty-five character string.",
strs =[],
newStr,
appends = 5000;
while (appends--) {
strs[strs.length] = str;
H

newStr = strs.join("");

Figure 5-3 shows this test's running time in IE7.

K 5-3 Tonth IE7 EBEAT IR o A F et 1] o

i 40

10 - i

'g':en- =

(=4

10 - 10

7 5,000 ; 000 15000 0000
Appends

Figure 5-3. Time to concatenate strings using array joining in IE7

B 5-3 TE7 AP S B 3 Bk M 2 5 4 £ BT D N 1]

This dramatic improvement results from avoiding repeatedly allocating memory for and copying progressively
larger and larger strings. When joining an array, the browser allocates enough memory to hold the complete

and never copies the same part of the final string more than once.

XA UE AR B HOR S5 RS R D G 1R I AE Sy BOANFS DUBCRIBCR K 745 R o BRSSP
BT & 7 BC AR 9 K WA TAE A 74T £, ANV — I P8 DU 26 7 A5 H3 [[R)— & 7o

String.prototype.concat

The native string concat method accepts any number of arguments and appends each to the string that the
method is called on. This is the most flexible way to concatenate strings because you can use it to append just one

string, a few strings at a time, or an entire array of strings.

JRAE A R R R B RAT R A WS PR S EERE IR R T o8 B 745 R B IR IR
P B RIER i, BOG ORI DU B8 — A i, B B P58, B e 3 745
.

// append one string

str = str.concat(s1);

// append three strings

str = str.concat(s1, s2, s3);

// append every string in an array by using the array
// as the list of arguments

str = String.prototype.concat.apply(str, array);

Unfortunately, concat is a little slower than simple + and += operators in most cases, and can be substantially
slower in IE, Opera, and Chrome. Moreover, although using concat to merge all strings in an array appears
similar to the array joining approach discussed previously, it's usually slower (except in Opera), and it suffers
from the same potentially catastrophic performance problem as + and += when building large strings in IE7 and

earlier.

NER R, REZHAGHT concat LLiR B A+FI+=12—2£L, T H7E IE, Opera # Chrome b KIEZIZ. it
Ab, BRI concat & A T EAF R AR IR ARG 2402, (HIEH EHEZ L8
(Opera Br4M) , 1 H e LR R AEME ML BE] B, 1F W1 TE7 F15E BLRRA 5 FH+F+=0 @ K57 B ARAE

Regular Expression Optimization 1EN|ZREXX ML

Incautiously crafted regexes can be a major performance bottleneck (the upcoming section, "Runaway
Backtracking" on page 91, contains several examples showing how severe this can be), but there is a lot you can
do to improve regex efficiency. Just because two regexes match the same text doesn't mean they do so at the same

speed.

FH A2 55 T U RIE 3 I Bk BE AT 1 B A U T [ml i k2 — 1 — 250 7 B IR e 2 A I
TR, (ISR 2 AT ARG R MR SRR 7o P I WZRIA S VLA R SCAS AN R A Atk AT T
HAT R S5 1

Many factors affect a regex's efficiency. For starters, the text a regex is applied to makes a big difference
because regexes spend more time on partial matches than obvious nonmatches. Each browser's regex engine also

has different internal optimizations.

PP N W IEMRA SRR . 5o, IENIRIA FCE BRI SO T2 7 9, R 7 UL BC I be 5 2 ANULRC BT
FHVRT IR TB) 224 o B b Wt F) T IRk 305 | B AT AN TR R PO AR AR o

Regex optimization is a fairly broad and nuanced topic. There's only so much that can be covered in this
section, but what's included should put you well on your way to understanding the kinds of issues that affect regex

performance and mastering the art of crafting efficient regexes.

IEWIERE A — N 2 A BN AT R ILATRE, A SRIZ L AT B T
S I eIk s R 1 25 i] SR S48 9 5 @ U E MIZTA I 2R

Note that this section assumes you already have some experience with regular expressions and are primarily
interested in how to make them faster. If you're new to regular expressions or need to brush up on the basics,
numerous resources are available on the Web and in print. Regular Expressions Cookbook (O'Reilly) by Jan
Goyvaerts and Steven Levithan (that's me!) is written for people who like to learn by doing, and covers JavaScript

and several other programming languages equally.

HER, ARG O BA ENREAER, EEGFE Tafr e T, aRE2 EMRIE HH
F, WECTFEE] —THEM, W EMP EAAEFZ%0H. (Regular Expressions Cookbook) (Q'R=ills)

Fi Jan Goyvaerts f Steven Levithan (ASSCAE# !) NARLEE TSR A9 S, Wss T JavaScript F1HAD
HFEIE S .

How Regular Expressions Work 1FNJ3&& 3 TAE R P

In order to use regular expressions efficiently, it's important to understand how they work their magic. The
g p y p y g

following is a quick rundown of the basic steps a regex goes through:

h T ARG ENRRA, BRI AR R B N2 IEWRA UL R A D B

Step 1: Compilation

B ik

When you create a regex object (using a regex literal or the RegExp constructor), the browser checks your
pattern for errors and then converts it into a native code routine that is used to actually perform matches. If you

assign your regex to a variable, you can avoid performing this step more than once for a given pattern.

MIRENE T MENERA N R)5 (I — AN ENIZRE N E R R 8 RegExp it ds) , W46 &
PRI A BT R, SRR B — DAL BIRE, A ST LR A ARy e ARk U 45
—NAgEE, URAT LR e R RATIE S .

Step 2: Setting the starting position

Bb WERGE

When a regex is put to use, the first step is to determine the position within the target string where the search
should start. This is initially the start of the string or the position specified by the regex's lastIndex property, but
when returning here from step 4 (due to a failed match attempt), the position is one character after where the last

attempt started.

BN EMFERBANEN, B2 E B 7 & POT R RO E . ERTATHRRGME, 5
& IENIZE S lastindex JEPEFRE, (B 9E A DD IR 0] 25K HLA IR i (IR SR UL RS AR IO
BT Ba R G A B G A PRI E L.

Optimizations that browser makers build into their regex engines can help avoid a lot of unnecessary work at
this stage by deciding early that certain work can be skipped. For instance, if a regex starts with #, [E and Chrome
can usually determine that a match cannot be found after the start of a string and avoid foolishly searching
subsequent positions. Another example is that if all possible matches contain x as the third character, a smart
implementation may be able to determine this, quickly search for the next x, and set the starting position two

characters back from where it's found (e.g., recent versions of Chrome include this optimization).

WeEds) AL ENFREAGI BN INE R, R B R Pt — S AL B TR, fildn,
R AN ENRE A LAATT 3k, TE A1 Chrome M A BrE 745 F 4G A B I T REMSULEL, AR5 ml ikt e i d%
W RIR LA E . T T RILEC =N PR x BT, AN IRBIRINE RG] x, AR5 PR
GO E AP AT (P, SRIEH) Chrome FROASEHE TXFLAL)

Step 3: Matching each regex token

=2 ULERAIENRRE T T

Once the regex knows where to start, it steps through the text and the regex pattern. When a particular token
fails to match, the regex tries to backtrack to a prior point in the match attempt and follow other possible paths

through the regex.

IEMIERIE S — BAR IR A RS, B — AT H AR SCRNTE N RIE AR . 24— M5 7 oL i
R, ENZRA AR R B [2T 2 AT RIAL B B, AR BEAN IR WIZRIE A HAR W] BER A2 L

Step 4: Success or failure

00 VLRI ERI

If a complete match is found at the current position in the string, the regex declares success. If all possible
paths through the regex have been attempted but a match was not found, the regex engine goes back to step 2 to
try again at the next character in the string. Only after this cycle completes for every character in the string (as

well as the position after the last character) and no matches have been found does the regex declare overall failure.

ERTE 74 H B A B BRI — e Ui, A TENERGE A E AT . iR WIZRIE S BT A vl g
AR 1, (ERRA I ILES, A A ENEREGI R 22 2, WP — P A B
e RAATFHREFROEBNTR (DR — PR RN E) AL TEERERZ)G, 3 st
e, A IE MR R St B A R L

Keeping this process in mind will help you make informed decisions about the types of issues that affect regex

performance. Next up is a deeper look into a key feature of the matching process in step 3: backtracking.

IR — DR AT B T 4 B P A 5) T ISR SOV B T K2R A o 3 T SR IA RN I o =20
LB AR e A (Bl

Understanding Backtrack ZE## A3

In most modern regex implementations (including those required by JavaScript), backtracking is a
fundamental component of the matching process. It's also a big part of what makes regular expressions so
expressive and powerful. However, backtracking is computationally expensive and can easily get out of hand if
you're not careful. Although backtracking is only part of the overall performance equation, understanding how it
works and how to minimize its use is perhaps the most important key to writing efficient regexes. The next few

sections therefore cover the topic at some length.

TERZ BHACENIZRIE AL (B4 JavaScript T 5 RIS ARREAA B 7. ERK
R bt TE)RR S 3R e S K AR . SRTTT, [P oH AR & O, WRARANIS AN [R5 72 5 2R3
SR FE R AAVERER ME— A3, BEAR SR AR, DAR AT o A A, TR 4 'S = RO E ARk
ABRE RO ml. DI A TR L B KR IR TR A0 L

As a regex works its way through a target string, it tests whether a match can be found at each position by
stepping through the components in the regex from left to right. For each quantifier and alternation, a decision
must be made about how to proceed. With a quantifier (such as *, +?, or {2,}), the regex must decide when to try
matching additional characters, and with alternation (via the | operator), it must try one option from those

available.

AN ENFGE R HAR A B I, ARG B0 EWRRE SR 4L it 7y, R M E B
REANBEFRZ—ANILRC. X TR — N EAM 3L, FLRE RS T R — MW GEr*, +2,
HFE (2,0, ENRERLAGRE MR 2K LB E Z PR W23 CE AR, SR BNIX
SERE I AR — AT AR

Each time the regex makes such a decision, it remembers the other options to return to later if necessary. If the
chosen option is successful, the regex continues through the regex pattern, and if the remainder of the regex is also
successful, the match is complete. But if the chosen option can't find a match or anything later in the regex fails,
the regex backtracks to the last decision point where untried options remain and chooses one. It continues on like
this until a match is found or all possible permutations of the quantifiers and alternation options in the regex have
been tried unsuccessfully, at which point it gives up and moves on to start this process all over at the next

character in the string.

B IENRE M IR RE, R L ERE, ERictE D —MEm, Pl kiR R
PFITiE)5 SEUCHE L, TENRRIE FOR 4R ST 1E WA OB, A R R UL FC ey 17, A A ULt 45
W o AERURPTIEFER) T AR REA ARS8 JF R UL R R T, IEMIRGAFCR R 205 —
ARFT, RIGTERIR B IR >, EARSEXIE N £, BHERP—AULE, B B 1AM 7 SR
FITA AT RERIH A S AR 2RI T B A M I — i, AR B FE A BT — 4 s
BRI .

Alternation and backtracking 73 32 1 [H[3]

Here's an example that demonstrates how this process plays out with alternation.

BN R R B S UFEP S P S i SR i

/h(ellojappy) hippo/.test("hello there, happy hippo");

This regex matches "hello hippo" or "happy hippo". It starts this test by searching for an h, which it finds
immediately as the first character in the target string. Next, the subexpression_r(ellojappy) provides two ways to
proceed. The regex chooses the leftmost option (alternation always works from left to right), and checks whether

ello matches the next characters in the string. It does, and the regex is also able to match the following spacc

character. At that point, though, it reaches a dead end because the h in hippo cannot match the t that comes next
in the string. The regex can't give up yet, though, because it hasn't tried all of its options, so it backtracks to the
last decision point (just after it matched the leading h) and tries to match the second alternation option. That
doesn't work, and since there are no more options to try, the regex determines that a match cannot be found
starting from the first character in the string and moves on to try again at the second character. It doesn't find an h
there, so it continues searching until it reaches the 14th character, where it matches the h in "happy". It then steps
through the alternatives again. This time ello doesn't match, but after backtracking and trying the second

alternative, it's able to continue until it matches the full string "happy hippo" (see Figure 5-4). Success.

I TF)2 S UL “hello hippo”2“happy hippo”. Ml —JF4h, AL 4 h, HIRFRHRHE T
BEBIF R h, BRI RS T TR, TRIES Cellofappy) #24E T WAL IFEIR . 1F)ik Uik #
BAAREI (3R HE R RN ZIEHAT) , R ello £ EILAL AR KT — N4/ ML, AR5
IEN A VLS T 5 RS #s . ARMAEIX — i BesEdE TIEHAR, 24 hippo B h ANGEILEL 45 5
N —A PRt SR IEZRA R GEANGEIGT, BB A 20 A ik, BES Bl 25—
sl (FEEILE T E T h ZRRICE 1D FReallL il s =0 ORI (B &AL, i H s
AHELZHIEIT, FrE EMERR A AT BRI — AR SRR 2 A BRI, BRI AN = A
FETEhh, ERHAT A BRI E h, PrLORARLE JE R, HEIR 14 N FEEA R, BULE happy A
A he RIEEHIRIENSSOEFR . IR ello ARAEILAL, (R RIHZJE5 Xy 3cd i, BULE 735
7 5 “happy hippo” (U1l 5-4) o DLELEIIT .

Match attempt at character 1:
/h(ello|appy)_hippo/

Backiraik

h:].]a_ihere, happy hippo

[Match attempt at character 14;
/h(ello|appy) hiEEf
B ktrack

heldo there, happy hippo,,
lailune: MHOESE

Figure 5-4. Example of backtracking with alternation

B 5-4 7y IRl

Repetition and backtracking & 5[]

This next example shows how backtracking works with repetition quantifiers.

T AT R T B A EL

var str = "<p>Para 1.</p>"+
"" +
"<p>Para 2.</p>" +
"<div>Div.</div>";

[<p>.*<V/p>/i.test(str);

Here, the regex starts by matching the three literal characters <p> at the start of the string. Next up is .*. The
dot matches any character except line breaks, and the greedy asterisk quantifier repeats it zero or more times—as
many times as possible. Since there are no line breaks in the target string, this gobbles up the rest of the string!
There's still more to match in the regex pattern, though, so the regex tries to match <. This doesn't work at the end
of the string, so the regex backtracks one character at a time, continually trying to match <, until it gets back to the
< at the beginning of the </div> tag. It then tries to match V (an escaped backslash), which works, followed by p,
which doesn't. The regex backtracks again, repeating this process until it eventually matches the </p> at the end of
the second paragraph. The match is returned successfully, spanning (¥ #VE£: K /& scanning) from the start of

the first paragraph until the end of the last one, which is probably not what you wanted.

IEFRIE A — ERFUILIE T 45 BT IR = A Fhl<p>. RIFR.* . mUTUILILERIT R LML R T4
B SRR RR N EE TR E IR—AL R EZ MR E . PO HAR PR 8 F sy ATy, B
RN R 2B # L A ENIRE B e 7 2 AT ZEULE, BrEUENIRA A A<, BT
PR AR RILEEAEL), BRI — 775, dksiilliii<, B2 ER 2l</divirBf<fiiE. R5
ERARILALY B SURRMT) o DLECEED, SRJEJE p, VRECANRRED. IENIZRIENAREL], ERILER, B
P CBOREN EL TULES T </p>. ULEGRBIED, EMER—BELE — BHRM ARG — MIRRE, X6
ARARAHE LS R

You can change the regex to match individual paragraphs by replacing the greedy * quantifier with the lazy
(aka nongreedy) *?. Backtracking for lazy quantifiers works in the opposite way. When the regex /<p>.*?<\/p>/
comes to the .*?, it first tries to skip this altogether and move on to matching <\/p>. It does so because *? repeats
its preceding element zero or more times, as few times as possible, and the fewest possible times it can repeat is
zero. However, when the following < fails to match at this point in the string, the regex backtracks and tries to
match the next fewest number of characters: one. It continues backtracking forward like this until the <\p> that

follows the quantifier is able to fully match at the end of the first paragraph.

PRAT LORE TE MR S i D A8 A eSO it (AL ARDR4E) a2, DAVLECSRASBe . it = 1A A o]
WA LA By SRR T « IR MIZRIE T /<p> #2<Vp>AERE] *20, & B ek il 285 4R 4R UL I <Vp>.
R AR LT RE K, HRTEEOER, KRGl a T UEEZR. B2, Mk
JERI<E T B m EUSEC R, IEMIGA PRI 208 — M NP8 — A BRI
P 1) BB 80 25— B R R, B0 BB 3R A T <Vp>13 2 58 4= L.

You can see that even if there was only one paragraph in the target string and therefore the greedy and lazy

versions of this regex were equivalent, they would go about finding their matches differently (see Figure 5-5).

WER FARTAT 8 R AT — Bk, URWT LA 2 I WAk S S AR R A RIS R AS 2 S0 i, (B A]2
IRILEC RS REA R (s 5-5) .

Target string:
<p>Paral. </p>

Greedy quantifier: Lazy quantifier:
1<p>."<\p>/i 1<p>.M1<Mp>/i

12345678 123 4 56748

b i I~ R L o

123 4 S6TH
Match found in 16 steps.

123 4 s674
Match found in 22 steps.

Figure 5-5. Example of backtracking with greedy and lazy quantifiers

Bl 5-5 A1 o 2% B i A i Al

Runaway Backtracking [F[3J]2c$

When a regular expression stalls your browser for seconds, minutes, or longer, the problem is most likely a
bad case of runaway backtracking. To demonstrate the problem, consider the following regex, which is designed
to match an entire HTML file. The regex is wrapped across multiple lines in order to fit the page. Unlike most
other regex flavors, JavaScript does not have an option to make dots match any character, including line breaks,

so this example uses [\s\S] to match any character.

BRI A A s A, b el SIS RN,) Rt PR AT BE 2 I e BBt)
B, ST ENRE, R B RITEEEA HTML S0 MERIA R B2 AT 0 T3E & U 2
o AMEHA K Z BOENIZE A, JavaScript BAT B AL 5 VLECAER 747, BEHATAT, Brilit
ek ANS\S] LR T B 45

/<htmI>]\s\S]*?<head>[\s\S]*?<title>[\s\S]*?<V/title>[\s\S]*?<\/head>

[\s\S]*2<body>[\s\S]*?<Vbody>[\s\S]*?<V/html>/

This regex works fine when matching a suitable HTML string, but it turns ugly when the string is missing one
or more required tags. If the </html> tag is missing, for instance, the last [\s\S]*? expands to the end of the string
since there is no </html> tag to be found, and then, instead of giving up, the regex sees that each of the previous
[\s\S]*? sequences remembered backtracking positions that allow them to expand further. The regex tries
expanding the second-to-last [\s\S]*?—using it to match the </body> tag that was previously matched by the
literal <Vbody> pattern in the regex— and continues to expand it in search of a second </body> tag until the end
of'the string is reached again. When all of that fails, the third-to-last [\s\S]*? expands to the end of the string, and

SO Oon.

I IE N ZRIA ACULEC IE R HTML F47 $R I AR RAF, (HR2 AR HAre 75 B s b — D2 M ediind, et
KA TR BIII</MtmI>FRAEER, ARG — N\S\SPHM T R BT RIAR R, BOATEIR EEA K
B</mtmI>br%E, RJEHEA ST, ERAA K SEIATRIN\S* 2 BAZ S I B A7 &, e T — 2
Ko EMFRER AR R EIECEE —A\\S*——H & IL AL </body>h5%%, #L=2 L ATVEET I 1F W) FeiE AR
<Vbody> [MR2E—ARSF AR S R A </body>hr 8 H I F AR IR . UTH XL BRI T
EIBCE =AN\\SI* Y R R PR ARRE, ML

The solution: Be specific f#HFiE: BARL

The way around a problem like this is to be as specific as possible about what characters can be matched
between your required delimiters. Take the pattern ".*?", which is intended to match a string delimited by
double-quotes. By replacing the overly permissive .*? with the more specific [*"\r\n]*, you remove the

possibility that backtracking will force the dot to match a double-quote and expand beyond what was intended.

LR [R P A TR AT RE R AT HY 0 B 75 < (R AT UL FC A e st *2 UL FE X5 | =
B — A 8 R BARR A \en] * B T 3872 /0.5, 5UEBR T RN AT Be A AR LAME L, st
Mri ULl T 5, B RIS I .

With the HTML example, this workaround is not as simple. You can't use a negated character class like [*<]
in place of [\s\S] because there may be other tags between those you're searching for. However, you can reproduce
the effect by repeating a noncapturing group that contains a negative lookahead (blocking the next required tag)
and the [\s\S] (any character) metasequence. This ensures that the tags you're looking for fail at every intermediate
position, and, more importantly, that the [\s\S] patterns cannot expand beyond where the tags you are blocking via

negative lookahead are found. Here's how the regex ends up looking using this approach:

7£ HTML [5 R R IMEAR A AT 8. PRANBEAE 508 AR B I [<1 AR s \S D A R i AR
T e IB R AN RS . (B0, (RAT LB R — ARl 2 R RCR, e & — Bl (B
FE N AN HIRREE) MN\S] ER TR JoPdl. IR FIRIA S EARE IR Ml R, AR5,
S EE, [\S\SHERAE (RE DU 2 A FHZE AR S PR I TN BERE e . N IR TENIRIE dk
Kl

/<htmI>(?:(?1<head>)[\s\S])*<head>(?:(?I<title>)[\s\S])*<title>
(2:(N<\title>)[\s\S])*<\title>(?:(21<Vhead>)[\s\S])*<\head>
(2:(?1<body>)[\s\S])*<body>(?:(?!<Vbody>)[\s\S])*<\body>

(2:(1<Vhtml>)[\s\S])*<Vhtml>/

Although this removes the potential for runaway backtracking and allows the regex to fail at matching
incomplete HTML strings in linear time, it's not going to win any awards for efficiency. Repeating a lookahead
for each matched character like this is rather inefficient in its own right and significantly slows down successful
matches. This approach works well enough when matching short strings, but since in this case the lookaheads may
need to be tested thousands of times in order to match an HTML file, there's another solution that works better. It

relies on a little trick, and it's described next.

BIRRFEMIE R T FERIRI AT, JF Se i IENRZGA UL AN 25 HTML 747 3 RO, A A et)
HXAKERENRR, (ARG IRA R . BRRENBAIL TR 2R AE SR =20, M.

VEPCIE R AR 2418 o VLECERE 74 R I VAR 2 AR, (ELULES — > HTML SCIF AT BE R 22 AT HF it
Ko TPl RIT E LA, EAEH T — /MY, ik

Emulating atomic groups using lookahead and backreferences 1§ BTER 5 75| 2SR T4

Some regex flavors, including .NET, Java, Oniguruma, PCRE, and Perl, support a feature called atomic
grouping. Atomic groups—written as (?>...), where the ellipsis represents any regex pattern—are noncapturing
groups with a special twist. As soon as a regex exits an atomic group, any backtracking positions within the group
are thrown away. This provides a much better solution to the HTML regex's backtracking problem: if you were to
place each [\s\S]*? sequence and its following HTML tag together inside an atomic group, then every time one of
the required HTML tags was found, the match thus far would essentially be locked in. If a later part of the regex
failed to match, no backtracking positions would be remembered for the quantifiers within the atomic

groups, and thus the [\s\S]*? sequences could not attempt to expand beyond what they already matched.

—BIE L K51 %, WINET, Java, Oniguruma, PCRE, Perl, 37— MIEIRTHIKEM. JET4,
B> GEEE: AP B r Rk, BI85 R NE R IE R B —E g i —
ANRERR R o 7R T TR 2 e 1 IRk R e AT T 90 0 A 557 X o HTMIL 1 I sk
(1990) B T — S A (AR R M ARG [\\ST* 23 1R S THT 1Y) HTML A ic — i JlfE — AN R 44
i, A ITRR R HTML AR R I —IK, IXIRUCECHEA b Bie 7o SR 1F WIS =00 S5 B3 43 UL T 2k
W, AL R R RA AT ISR I, IR \S\ST*2 A sk N RS 21 O VT R 9 Rl 2 4F

That's great, but JavaScript does not support atomic groups or provide any other feature to eliminate needless
backtracking. It turns out, though, that you can emulate atomic groups by exploiting a little-known behavior of
lookahead: that lookaheads are atomic groups. The difference is that lookaheads don't consume any characters as
part of the overall match; they merely check whether the pattern they contain can be matched at that position.
However, you can get around this by wrapping a lookahead's pattern inside a capturing group and adding a

backreference to it just outside the lookahead.Here's what this looks like:

R TSR (B2, JavaScript ASCRFIR T4, WARAHAD G EHEEA L Z AR A, R
F AR ARSI AR — I NN RAT R BR 74 AR IR 74l ARRE, AR Uit
B, ANHEETA: EREREH COERBREUR SR T B ULE. SR, ARTT BURITIZ AL,

AP e — N ATIERR, BRI Z AN ERI— N E R 5. EE R T

(?=(pattern to make atomic))\1

This construct is reusable in any pattern where you want to use an atomic group. Just keep in mind that you

need to use the appropriate backreference number if your regex contains more than one capturing group.

FEAEATARFT AL S 7 2 RO e ok A i ha R T B T Ao HBE0AE, AR ZEAETE 24 1 a1 5 | R 2
WERARA IE MR U0 & 2 Ak 4l .

Here's how this looks when applied to the HTML regex:

HTML 1EWZRIE S AR 5 B 2 F

/<html>(?=([\s\S]*?<head>))\1 (?=([\s\SJ* 2<title>))\2(2=([\s\S]*?
<Vtitle>))\3(2=([\s\S]*2<Vhead>)\4(?=([\s\S]*?<body>))\5

(2=([\s\S]*2<Vbody>))\6[\s\S]*?<\Vhtml>/

Now, if there is no trailing </html> and the last [\s\S]*? expands to the end of the string, the regex
immediately fails because there are no backtracking points to return to. Each time the regex finds an intermediate
tag and exits a lookahead, it throws away all backtracking positions from within the lookahead. The following
backreference simply rematches the literal characters found within the lookahead, making them a part of the

actual match.

BUAE I AT FERE H9</html>F8 2 55 5 — N (\\ST* PR TR 2 7T AF SR 4, IEMIZRIE TR S 2R M IR
A AT LR [l TENRRIE SRR R R — > R IRAR AR AR 1 — AN A0YE, EAE ATE R T E 5 B A (Rl AL
Bo N ANA RG] T S ER UG RTRE SRR TR A AT AT SERRULEL R — B)

Nested quantifiers and runaway backtracking k%8 17 1 A =

So-called nested quantifiers always warrant extra attention and care in order to ensure that you're not creating
the potential for runaway backtracking. A quantifier is nested when it occurs within a grouping that is itself

repeated by a quantifier (e.g., (x+)*).

P R A B e/ EA MO SR Dy, BB RSO 2 [P M. B R fe i 2 e
B SHEEERBAT Blne*) .

Nesting quantifiers is not actually a performance hazard in and of itself. However, if you're not careful, it can
easily create a massive number of ways to divide text between the inner and outer quantifiers while attempting to

match a string.

WEERAS I ASEARMEREEE. R, ARG, EIRESTEZRIL S A B R, 7N
AR MAMTE I Z 6], A KHE SRR T

As an example, let's say you want to match HTML tags, and you come up with the following regex:

P, BBARAEVLECH) HTML AR5, AR 1 T E NIRA 5

ST

This is perhaps overly simplistic, as it does not handle all cases of valid and invalid markup correctly, but it
might work OK if used to process only snippets of valid HTML. Its advantage over even more naive solutions
such as /<[*>]*>/ is that it accounts for > characters that occur within attribute values. It does so using the second
and third alternatives in the noncapturing group, which match entire double- and single-quoted attribute values in

single steps, allowing all characters except their respective quote type to occur within them.

RV T, ROYEANREERAC BT AT LA RN RIS, (EEEEA R HTML F B iz
Bt a b 5 EMAhRER/< > AR, ERIUAYE T TR E AR>S . R T
EAMER R AR =037, TR RS S MG S B R PEE, BREFERIS 5 A Sedr A 7
o

So far, there's no risk of runaway backtracking, despite the nested * quantifiers. The second and third
alternation options match exactly one quoted string sequence per repetition of the group, so the potential number

of backtracking points increases linearly with the length of the target string.

FIH AR R RIS R, REE CRERR DAEARNBRERERET, B =3
IR R VLI — AN S| S4TSR, BT ELEE R (1 2 B H AR 745 S I e PR

However, look at the first alternative in the noncapturing group: [*>""]. This can match only one charac

a time, which seems a little inefficient. You might think it would be better to add a + quantifier at the end of

character class so that more than one suitable character can be matched during each repetition of the group—and
at positions within the target string where the regex finds a match—and you'd be right. By matching more than

one character at a time, you'd let the regex skip many unnecessary steps on the way to a successful match.

B, EHAMPARE D03 >, BRI N FAF, ISR . ARATREN N TE
PRGN — D+ E 1A S AL, XA REERAE RS LI 2 T — PR 7. ENRES
T RAFE AR 745 8 RSB B AN ILRC. AR XS A, B BRRULEE 2 74T, ARk IR RRE S i
DUCHC R R e Bl 17 22 AN 0 221 P8R

What might not be as readily apparent is the negative consequence such a change could lead to. If the regex
matches an opening < character, but there is no following > that would allow the match attempt to complete
successfully, runaway backtracking will kick into high gear because of the huge number of ways the new inner
quantifier can be combined with the outer quantifier (following the noncapturing group) to match the text that

follows <. The regex must try all of these permutations before giving up on the match attempt. Watch out!

B LR AR B e R I G R M 2 W 7o A R IE IR UL — <74, (BJEA>,
T LA VL RE BT SE B, Bt e it NPRAE, IR AR SR AN AN R Eml s 4L & 74 T8 ER
7 3 Ae (IRAEAR IR 2)5) PSR <Z JE HISCAS . IENIERIA SR SR 28T UL I T L R BT Y
FEFI A o B2 2000 !

From bad to worse. MIRE|FEIR

For an even more extreme example of nested quantifiers resulting in runaway backtracking, apply the regex
/(A+A+)+B/ to a string containing only As. Although this regex would be better written as /AA+B/, for the sake
of discussion imagine that the two As represent different patterns that are capable of matching some of the same

strings.

R R R SR A N ENR B T, B KF A BN ENRIE/(A+A+H)+B/. BAREA
IEWIERIE S BU/AA+B/EE LT, (B0 TRHEE, BAB— N A A BERSULHC IR — N34 R K 2 D FogieR .

When applied to a string composed of 10 As ("AAAAAAAAAA"), the regex starts by using the first A+ t~

match all 10 characters. The regex then backtracks one character, letting the second A+ match the last one.

grouping then tries to repeat, but since there are no more As and the group's + quantifier has already met its
requirement of matching at least once, the regex then looks for the B. It doesn't find it, but it can't give up yet,
since there are more paths through the regex that haven't been tried. What if the first A+ matched eight characters
and the second matched two? Or if the first matched three characters, the second matched two, and the group
repeated twice? How about if during the first repetition of the group, the first A+ matched two characters and the
second matched three; then on the second repetition the first matched one and the second matched four? Although
to you and me it's obviously silly to think that any amount of

backtracking will produce the missing B, the regex will dutifully check all of these futile options and a lot more.
The worst-case complexity of this regex is an appalling O(2n), or two to the nrth power, where 7 is the length of
the string. With the 10 As used here, the regex requires 1,024 backtracking steps for the match to fail, and with 20
As, that number explodes to more than a million. Thirty-five As should be enough to hang Chrome, IE, Firefox,
and Opera for at least 10 minutes (if not permanently) while they process the more than 34 billion backtracking
steps required to invalidate all permutations of the regex. The exception is recent versions of Safari, which are
able to detect that the regex is going in circles and quickly abort the match (Safari also imposes a cap of allowed

backtracking steps, and aborts match attempts when this is exceeded).

AR AE AN 10 D A 4RI FA 8 B (“AAAAAAAAAA™) , IENIRIER G IS A+
THHA 10 NERFe ARG ERIARF—AFRF, 8 oA A+ RS — T4 REXA AR &
S, (AREAEZN A TH A+ H A& LR R R > —k, B ENRE T E B,
CERAREL ARIERNERGE, FWAEHE T ZEEEAENE. R E—A AL 8 M7, B4
AHICEE 2 M FRFREARENE? B 8 —ICEE 3 A, 3 ANLE 2 A, A EEHR, XSBEARR?
RIESAME—BEZ S, B AHLE 2 MR, 3B A A+ILE 3 M4, REHR BES S, Hi—
AMLEE 1A, BATLE 4 4, SUBARIE? BRI AR FIIA A 22 IR B 5 o] AR SIS A AE
(K1 B, (R IF MIERIA AR 25 M S — I S — IRHIAS A3 BT A7 I L5 70 A IR BT o G TE) ZRIA U R I i i 4
PR —MEAR O2n), WHE 2 I n 7. n FRFRHRIKE . 78 10 A MBI AR, ERIRE
T EL 1024 R P11 BEAREUCEL RN, W SR 20 4 A, iZ BRI 2] — 1 7 LA .25 4~ A LLEE 2 Chrome,
IE, Firefox, 1 Opera /> 10 738 (Wt BILWIEHLIGE) FH LAAL B L =1 PU & 7 a4 (a3 AHERR 1E W) ik
IS FHAI A o ME— RIS BRI Safari, & BEWS RN E WA AN THRER, JRHuE 28 RIUR

(Safari & FRE 1[I R RCEL, B8 H 22 EDLRCSEAD &

The key to preventing this kind of problem is to make sure that two parts of a regex cannot match the same
part of a string. For this regex, the fix is to rewrite it as /AA+B/, but the issue may be harder to avoid with
complex regexes. Adding an emulated atomic group often works well as a last resort, although other solutions,
when possible, will most likely keep your regexes easier to understand. Doing so for this regex looks like

/((?=(A+A+))\2)+B/, and completely removes the backtracking problem.

T3 I 2) 20 1 5 B 2 A O 1 0 s 2R P38 70 AN BE X 2 5 A A) — 38 70 BB A T DL L« T2 1R R 5K
G N/AATB/, (AL 2R I WA 20 AT GEME LARE S e 2 () o 38— MR T AR AT AR B J5 —FE A
M BRIEA HAB IR ING, R T RERITE, AT RECRIT UR A IE I Rk xUTaT B0 2 1o o SR 4 Bt 1)36
RO O ((7=(A+AH)\2)+B/, BRATIEH B T 1219 il

A Note on Benchmarking J[3AZE)i B5

Because a regex's performance can be wildly different depending on the text it's applied to, there's no
straightforward way to benchmark regexes against each other. For the best result, you need to benchmark your

regexes on test strings of varying lengths that match, don't match, and nearly match.

PRy TE MR S B RN FH SCAS AN Rl 7= ARAR K Z2 5, 50 a7 BB 7 1 i vl AR T W3R 3 T
PEREZ . AR RIERIFIATR, IR EAER A 777 ERIRAE RIS, AR AR, BERgULRCHY,
ANBEVCHCHT, ANEALC T A o

That's one reason for this chapter's lengthy backtracking coverage. Without a firm understanding of
backtracking, you won't be able to anticipate and identify backtracking-related problems. To help you catch
runaway backtracking early, always test your regexes with long strings that contain partial matches. Think about

the kinds of strings that your regexes will nearly but not quite match, and include those in your tests.

RWRABERR KRR AL — o WEREATH DI BAR BN, ol JCiE PRI E [A O). D 7
BRI HACR IR 7%, SO AR S R PR UL B 7 A A AR I TE N RRIE 3 B G TE 3R i 30 [
—EIERMEA B S RILI R PR &, R AT R R .

More Ways to Improve Regular Expression Efficiency #&ENRERXMENEZ ik

The following are a variety of additional regex efficiency techniques. Several of the points here have already

been touched upon during the backtracking discussion.

TR SR EENREXEREAR . IR A CEE R T

Focus on failing faster

e I EMRINGESR VSN

Slow regex processing is usually caused by slow failure rather than slow matching. This is compounded by the
fact that if you're using a regex to match small parts of a large string, the regex will fail at many more positions
than it will succeed. A change that makes a regex match faster but fail slower (e.g., by increasing the number of

backtracking steps needed to try all regex permutations) is usually a losing trade.

IEMIERIE AL P AEAE R DN VL RO R 8, A UL EL S Rt o RARAE A TR WAk UL A —
MRER AT — /N7y, ALY E, RN LB RIG A B L IL R I B 2 52 . R
— MBS IR NIRRT U E P E R RS (i, @ I G0 B 7 1 (B R 6 2 AT 20 SRS A

), KR A RIEHE 2

Start regexes with simple, required tokens

IEWIERIE FCUATR B, LTI e T 4

Ideally, the leading token in a regex should be fast to test and rule out as many obviously nonmatching
positions as possible. Good starting tokens for this purpose are anchors (* or $), specific characters (e.g., X or
\u263A), character classes (e.g., [a-z] or shorthands like \d), and word boundaries (\b). If possible, avoid starting
regexes with groupings or optional tokens, and avoid top-level alternation such as /one|two/ since that forces the
regex to consider multiple leading tokens. Firefox is sensitive to the use of any quantifier on leading tokens, and is

better able to optimize, e.g., \s\s* than \s+ or \s{1,}. Other browsers mostly optimize away such differences.

AR PE IS, — AN IR R SR 4G 7 o 2 AT B peadith R Ik RR B A CEC A & . BTt
H IR GR 7 eIl 2 — M (MRS, REE AT (B x 30w363A) , A (BN, [a-z]Ed T

flamdd , MRS (\b) o WERTTEERIUE, 4% LA A BOE R eIt Sk, 8 % HZR 7 Sl i fone

Pk e s TE M 3Rk sCIR) 2 MR 45 T . Firefox X 245 7o A A A AR B 1A IR BUR, B ILiui 58
G, lin, POs\s* AR+ {1,} o AR A K2 s s 72 e

Make quantified patterns and their following token mutually exclusive

I S EIAMNG AEEAE K Y EARE

When the characters that adjacent tokens or subexpressions are able to match overlap, the number of ways a
regex will try to divide text between them increases. To help avoid this, make your patterns as specific as possible.

Don't use ".*?" (which relies on backtracking) when you really mean "[*""\r\n]*".

HPAE T OMEAT B T RIA R R VLEC, — N IENIRIE SR 0 A SO AR RO R o it
IS, REREAIRIER . SR ERIA A\] ¥ I AN EAE <2 CRBUEID

Reduce the amount and reach of alternation

> S ECE, F/NeENTIVE R

Alternation using the | vertical bar may require that all alternation options be tested at every position in a
string. You can often reduce the need for alternation by using character classes and optional components, or by
pushing the alternation further back into the regex (allowing some match attempts to fail before reaching the

alternation). The following table shows examples of these techniques.

DA |, g, FTREESRAE T IR MR BN BT 0 SR, RIE AT I A A
ML IR PR 53 ST TG R, B8ORS 23 SCFE IEMIRGA A R S CTRr 2k 7 SCZ AT — LB LRl 2
IR o NI IR BRI BT

Instead of Use

cat |bat [cb]at
red|read rea?d
red|raw r(?:ed|aw)

(. hrlhn) [\s\S)

Character classes are faster than alternation because they are implemented using bit vectors (or other fast

implementations) rather than backtracking. When alternation is necessary, put frequently occurring alternati

first if this doesn't affect what the regex matches. Alternation options are attempted from left to right, so the more

frequently an option is expected to match, the sooner you want it to be considered.

TR SO R, UMM A7) s El (BHAR PRSI A FE. 23S0 AR, 5
W SOBAE S AT, A FOX AN R E WA SCVL LS . 0 STEIRA L2 A RIR AR, — R4
VLR ERIFLSIEE, E Al s Rt b o

Note that Chrome and Firefox perform some of these optimizations automatically, and are therefore less

affected by techniques for hand-tuning alternation.

£ Chrome M Firefox HEIHATRELM A ELLITH , DI/ Z 21T TIREKIN .

Use noncapturing groups

ik FH AR TR A

Capturing groups spend time and memory remembering backreferences and keeping them up to date. If you
don't need a backreference, avoid this overhead by using a noncapturing group—i.e., (?:...) instead of (...). Some
people like to wrap their regexes in a capturing group when they need a backreference to the entire match. This is
unnecessary since you can reference full matches via, e.g., element zero in arrays returned by regex.exec() or $&

in replacement strings.

FERATETN AN A A e E A5, JFRIFErTRER . MRRATE A FERGIH, rEd
A PH AR IR R X R —— i, (2.)R LD o BEASMTHZE IR S 5 A,
EXCRAATTR IE A SO — Ml A . KRAVEN, FOYIREEE I HAb 5k 5 72 ULk,
P, A regex.execOIRPIEAANI S —IoER, BT R HAIS&.

Replacing capturing groups with their noncapturing kin has minimal impact in Firefox, but can make a big

difference in other browsers when dealing with long strings.

AR AR BUACHAR AL AE Firefox FEMAAR AN, (B 7R HAD s AL T4F SR IR

Capture interesting text to reduce postprocessing

HEINRSAS RS S C S s

As a caveat to the last tip, if you need to reference parts of a match, then, by all means, capture those parts and
use the backreferences produced. For example, if you're writing code to process the contents of quoted strings
matched by a regex, use /""([*""]*)""/ and work with backreference one, rather than using /"[*"]*""/ and manually
stripping the quote marks from the result. When used in a loop, this kind of work reduction can save significant

time.

e — i, WRRFESI LR —&2, ReYEd —DITEB MR A i, PR 5 A
B i, wnRARE ARG — A ENRIE BT R 515 AP A5 i 2, A/ (O T) AR A] — ik
JREGI, ARG R R NGER BT TR@ES 5 AFEMA R AN, g 5 A TAERTEL
T KERE.

Expose required tokens

e e o

In order to help regex engines make smart decisions about how to optimize a search routine, try to make it easy
to determine which tokens are required. When tokens are used within subexpressions or alternation, it's harder for
regex engines to determine whether they are required, and some won't make the effort to do so. For instance, the
regex /" (abled)/ exposes its start-of-string anchor. IE and Chrome see this and prevent the regex from trying

find matches after the start of a string, thereby making this search near instantaneous regardless of string ler

However, because the equivalent regex /(“ab|*cd)/ doesn't expose its * anchor, I[E doesn't apply the same

optimization and ends up pointlessly searching for matches at every position in the string.

N7 B TE W3 25 | B e oo O AL T () R A o A R e, R Bt iy L R 20 T 10 7 7
27 Tuh AR T RIEREFE 73 30, IENRE G I BARAE A W b A TR AR LR, L85 B AME
%5 71. Biln, IENKIET/N(abled)/Z& 55 E 74 R LG . TE M Chrome SyER S — . JFHLIEIENIZR

AR A E IR TR ORI 2 R ROUL R, T & Rk R e i AVE 747 SR . (B, H T2 IEWIERIA
/(hablred)/ NP E I, 1B TGIEN A RO, B ER SOOI R 7/ h e — M8 EILES.

Use appropriate quantifiers

i P 24)]

As described in the earlier section “Repetition and backtracking” on page 90, greedy and lazy quantifiers go
about finding matches differently, even when they match the same strings. Using the more appropriate quantifier
type (based on the anticipated amount of backtracking) in cases where they are equally correct can significantly

improve performance, especially with long strings.

TERIHT 7 CERARN) Arishied (e, S E e A & RME UL ECRIFE I P45 H, kUL
HREWEANFS . EHRERASMIORE T, S ESERRERZEE G HUNREEIAED TR
mPhgE, JCHAEACEAR AR .

Lazy quantifiers are particularly slow in Opera 9.x and earlier, but Opera 10 removes this weakness.

B ' 1Al 7E Opera 9.x R LR AR L AGAMENE, {H Opera 10 JHFR T1X—99 fio

Reuse regexes by assigning them to variables

e s A &, I E]

Assigning regexes to variables lets you avoid repeatedly compiling them. Some people go overboard, using
regex caching schemes that aim to avoid ever compiling a given pattern and flag combination more than once.
Don't bother; regex compilation is fast, and such schemes likely add more overhead than they evade. The

important thing is to avoid repeatedly recompiling regexes within loops. In other words, don't do this:

5 L RAE Tt A i LU St B TEE g ie o A AN K, A IE N RIE NG A, LA St 4
SERBEBCRIAR I G AT 2 g% NSNS, IENERA R PEIRDE, TXRERISeA7 it B AN i) G dH ey
BRI AR AT R G by o TR B B SeAE A P A B R S 1 E WA 5 g ilh il ANZEXFEAL

while (/regex1/.test(strl)) {

/regex2/.exec(str2);

-

Do this instead:

BACRLI S i

var regex 1 = /regex1/,
regex2 = /regex2/;
while (regex1.test(strl)) {

regex2.exec(str2);

-

Split complex regexes into simpler pieces

1 B 2R LE MR A 73 Tl 51 7 B

Try to avoid doing too much with a single regex. Complicated search problems that require conditional logic
are easier to solve and usually more efficient when broken into two or more regexes, with each regex searching
within the matches of the last. Regex monstrosities that do everything in one pattern are difficult to maintain, and

are prone to backtracking-related problems.

e N EMRE MR 2 (0 T A . RARRE R P F 2525, SR A2 IENIRGA R
R, WHE B E R B ENRERAERE RULECE R P AT & R S T
VERENZGE AR B AR LD, M0 HLA 5 5 | RS (B AR 2) 1)

When Not to Use Regular Expressions A4 B EA N 248 A 1IE N FRE K

When used with care, regexes are very fast. However, they're usually overkill when you are merely searching
for literal strings. This is especially true if you know in advance which part of a string you want to test. For

instance, if you want to check whether a string ends with a semicolon, you could use something like this:

MOAERE, IENIERE R ARE PR, R, IR R R RSO AT SRR e
FCHE 77 8 AW — AR R ZE RGN . Fltn, MRS E AT R RN SER, R
GEE

endsWithSemicolon = /;$/.test(str);

You might be surprised to learn, though, that none of the big browsers are currently smart enough to realize in
advance that this regex can match only at the end of the string. What they end up doing is stepping through the
entire string. Each time a semicolon is found, the regex advances to the next token ($), which checks whether the
match is at the end of the string. If not, the regex continues searching for a match until it finally makes its way

through the entire string. The longer your string (and the more semicolons it contains), the longer this takes.

PRATRE AT AN AT, B A0 A A AT IR0 B s R B IR, BEMS ROR B AN I RGA A e
FEERIIR R . NI AR 2 — A — M ilhS T8 FR 8 BRI T A0S, IENIERIA:

BRI =T ($) , MAEELAGILE P AFRRARR. WERAZIZFERE, TENRRIA gk S8 2 LA,
BRI T TR TR R PRRRRKEEK (BER25ME) 8 h RN RS,

In this case, a better approach is to skip all the intermediate steps required by a regex and simply check

whether the last character is a semicolon:
RAEDL N, AR INE 2B E WA TR R A e 2P 3R, f i B fn — NP AR5
endsWithSemicolon = str.charAt(str.length - 1) =";";

This is just a bit faster than the regex-based test with small target strings, but, more importantly, the string's

length no longer affects the time needed to perform the test.

R 6 RN, SR M L E MRk r— o, (E S, 2 58 KR PR WA TR
B ST

This example used the charAt method to read the character at a specific position. The string methods slice,
substr, and substring work well when you want to extract and check the value of more than one character at a
specific position. Additionally, the indexOf and lastIndexOf methods are great for finding the position of literal
strings or checking for their presence. All of these string methods are fast and can help you avoid invoking the

overhead of regular expressions when searching for literal strings that don't rely on fancy regex features.

A TALH] charAt BECERF E AL E ERIUTAT . AT R AL slice, substr, A1 substring AT] 747 5
P B FARBUMS & 25 B 1{E. HAh, indexOff 1 lastindexOf #8504k 8 1& 4 £ HS & A B A B,
HWreE MRS AE TR BT X AT 5 AT R B AR R, 4 R ZOIS L AV LE W 2RIE sUR R PRI 5L
AFRF RIS, AT BT G IE WA s R (PR RETT 44

String Trimming FfFHEE

Removing leading and trailing whitespace from a string is a simple but common task. Although ECMAScript
5 adds a native string trim method (and you should therefore start to see this method in upcoming browsers),
JavaScript has not historically included it. For the current browser crop, it's still necessary to implement a tr

method yourself or rely on a library that includes it.

LBRF AR RS R R LTS . BLAR ECMAScript 5 I T AR A R R AB BT sR 2L (IR
PAZ AT AR R BB s E& 2e DD , B H B I JavaScript A A B & E . MR AT S
HLEA OSSR —ME R, S KE SRR .

Trimming strings is not a common performance bottleneck, but it serves as a decent case study for regex

optimization since there are a variety of ways to implement it.
BT B AR AN PR RE R, (B % X A AL 0] 5 Z R e B
Trimming with Regular Expressions F IEN|ZR&E 58

Regular expressions allow you to implement a trim method with very little code, which is important for
JavaScript libraries that focus on file size. Probably the best all-around solution is to use two substitutions—one to
remove leading whitespace and another to remove trailing whitespace. This keeps things simple and fast,

especially with long strings.

IEMIERE A VIR AR A A S — ME BT R B, IZXT JavaSeript JE0 ST RN FER B+ 70 2,
W RERUF A IR SR S T RIE S — DT RBSRERERE, 5 T AR Rk . X
AT LR GE, R AR AR B AT A

i

if (!String.prototype.trim) {
String.prototype.trim = function() {

return this.replace(/\s+/, "").replace(/\s+$/,"");

b
b

// test the new method...

// tab (\t) and line feed (\n) characters are
// included in the leading whitespace.
var str =" \t\n test string ".trim();

alert(str == "test string"); // alerts "true"

The if block surrounding this code avoids overriding the trim method if it already exists, since native methods
are optimized and usually far faster than anything you can implement yourself using a JavaScript function.
Subsequent implementations of this example assume that this conditional is in place, though it is not written out

each time.

i B A B S rim BRI e e e, BN RAE R BT T 0040, W TP TR A JavaScript H
CEREL FHRE TR A&l 7, BT REIRAS L.

You can give Firefox a performance boost of roughly 35% (less or more depending on the target string's
length and content) by replacing /\s+$/ (the second regex) with /\s\s*$/. Although these two regexes are
functionally identical, Firefox provides additional optimization for regexes that start with a nonquantified token.
In other browsers, the difference is less significant or is optimized differently altogether. However, changing the
regex that matches at the beginning of strings to /*\s\s*/ does not produce a measurable difference, because the
leading ” anchor takes care of quickly invalidating nonmatching positions (precluding a slight performance

difference from compounding over thousands of match attempts within a long string).

PRAT BA%E Firefox — K20 35%IPERESR T (B2 8T B AR A/ B KN AN 2D Tl As+$/
CE A ENERIEAD B piNs\s*$/ . BARIXHAENZFIA) Dy RE5t 240 [R], Firefox A4 FLELLE & iA]
FILHE SRR E Mk AR A 0 . AEHAR I YOS b, ERARRE, e m. Rim, ok
IERZRIE T, 7874 B T SR UL EC/ANs\s*/ A g 7= AR B B 22 e, DR DA i 7 2 SR TS 8 Pl 4 o P D o7 ol
T NRBIEREZE R, BOAE MR Pl ae AR BT IRILAC SR o

Following are several more regex-based trim implementations, which are some of the more common
alternatives you might encounter. You can see cross-browser performance numbers for all trim implementations
described here in Table 5-2 at the end of this section. There are, in fact, many ways beyond those listed here that
you can write a regular expression to help you trim strings, but they are invariably slower (or at least less

consistently decent cross-browser) than using two simple substitutions when working with long strings.

LAUN R JLANE T IENFRGE B BT p, IR T RE B 2 LA WA . IR BIZEAR TR R
52 FAEFIZRITIBA trim SEEIFEA RN s ERPERE. FsL b, B HAIR M INEAEZ 5%, R
LAS — N EMRAACRIE B 745 0, (B EAI7E K PR R, RPN R RE g (2
WE A sk — 2k .

// trim 2
String.prototype.trim = function() {

return this.replace(/"\s+|\s+$/g, "");

-

This is probably the most common solution. It combines the two simple regexes via alternation, and uses the /g
(global) flag to replace all matches rather than just the first (it will match twice when its target contains both
leading and trailing whitespace). This isn't a terrible approach, but it's slower than using two simple substitutions

when working with long strings since the two alternation options need to be tested at every character position.

XA RER BB H IRy 5 B SRR IF T AR IEWIRGAS, IR e (2R FRicts
PP ULES, AR S CHHARTAT R 5 R AT SR SR UL PO o« RIEAR — N TTMAR T,
(ERX AT FR AR, E LA AN B 1 A B e, RN P 20 SR I ZEMNA B A P A A

// trim 3
String.prototype.trim = function() {

return this.replace(/N\s*([\s\S]*?)\s*$/, "$1");

-

This regex works by matching the entire string and capturing the sequence from the first to the last
nonwhitespace characters (if any) to backreference one. By replacing the entire string with backreference one,

you're left with a trimmed version of the string.

A ENE) TAR R R VLSRN A R SRR — A BIBJR N EE R/ IR, e
JEEGIH 1o SRRMERE RS 1 AP R, B T I3 BB A

This approach is conceptually simple, but the lazy quantifier inside the capturing group makes the regex do a
lot of extra work (i.e., backtracking), and therefore tends to make this option slow with long target strings. After
the regex enters the capturing group, the [\s\S] class's lazy *? quantifier requires that it be repeated as few times as
possible. Thus, the regex matches one character at a time, stopping after each character to try to match the

remaining \s*$ pattern. If that fails because nonwhitespace characters remain somewhere after the current p

in the string, the regex matches one more character, updates the backreference, and then tries the remainder of the

pattern again.

AT EM T, (B B RO B IR A E WA AT VR 2 AUOMEAE (P, BB, DIE
BAF K H AR 74T B IR R o BEA IE WA IR, [\o\S]SAA Wi B 1) * 2 22 5 e R AT el D A 8
P, XA EWFGA BRI 74T, AEE N oREAVLEA T AN\ S . R P A FR i B2 e
FEAEARZEAE AT SEVLAC R, ENRGE TR VLR — B 745, SRR 51, AR5 FRR BRI
R o

Lazy repetition is particularly slow in Opera 9.x and earlier. Consequently, trimming long strings with this
method in Opera 9.64 performs about 10 to 100 times slower than in the other big browsers. Opera 10 fixes this

longstanding weakness, bringing this method's performance in line with other browsers.

7F Opera 9.x F1 5 R RAS HRMiids B 2455018 . K, XA J5E7E Opera 9.64 LB KA 2818 T 10
F) 100 f5. Opera 10 15 IE T IXAKIAELERI TS A, BT RIPE AR & 2] 5 5 e i) S8 A 24 7K o

// trim 4
String.prototype.trim = function() {

return this.replace(/N\s*([\s\S]*\S)?\s*$/, "$1");

-

This is similar to the last regex, but it replaces the lazy quantifier with a greedy one for performance reasons.
To make sure that the capturing group still only matches up to the last nonwhitespace character, a trailing \S is
required. However, since the regex must be able to match whitespace-only strings, the entire capturing group is

made optional by adding a trailing question mark quantifier.

RARIEAE E—MRE, Bl TIERe IR R Lot S im BN 1 i 1A . o i e P dl RULFC 2 B s —
ARG TAT, T REE— NS AR, T IR NIRRIA 3L 7 BENS VLRC 27l i e M AL 777 8, BNl
AR I B — AN B AR T A AT A

Here, the greedy asterisk in [\s\S]* repeats its any-character pattern to the end of the string. The regex then
backtracks one character at a time until it's able to match the following \S, or until it backtracks to the first

character matched within the group (after which it skips the group).

TR, [\\ST* S AR B RoR R T S P AER P AR E 2 PR A R R5 ENRE R
[N 74F, BLEIERENSULRLE HIA\S, B3 ELEN R 2158 — 745 UL RN (R R E B R A .

Unless there's more trailing whitespace than other text, this generally ends up being faster than the previous
solution that used a lazy quantifier. In fact, it's so much faster that in IE, Safari, Chrome, and Opera 10, it even
beats using two substitutions. That's because those browsers contain special optimization for greedy repetition of
character classes that match any character. The regex engine jumps to the end of the string without evaluating
intermediate characters (although backtracking positions must still be recorded), and then backtracks as
appropriate. Unfortunately, this method is considerably slower in Firefox and Opera 9, so at least for now, using

two substitutions still holds up better cross-browser.

R AL E PR 2, SR L AT AR L8 A =3 iy S k. FSE b, EFEIE,
Safari, Chrome A1 Opear 10 Lapitz e, S A S TRIE T %o RO IZ LR a8 S hr R AL
e, LIRSS T8 PR RILIE R FAT M A R AT . IEWIRATS | B E Bk 7 4 Ff R R M AR
A4 OVE R LGOS TR, RIEE AR . AERE, IXMOUTETE Firefox M1 Opera 9 EARH
18, BTULRIH Ak, AP 73R A RS SE AP s b s Oy %

// trim 5
String.prototype.trim = function() {

return this.replace(/N\s*(\S*(\s+H\S+)*)\s*$/, "$1");

-

This is a relatively common approach, but there's no good reason to use it since it's consistently one of the
slowest of the options shown here, in all browsers. It's similar to the last two regexes in that it matches the entire
string and replaces it with the part you want to keep, but because the inner group matches only one word at a time,
there are a lot of discrete steps the regex must take. The performance hit may be unnoticeable when trimming

short strings, but with long strings that contain many words, this regex can become a performance problem.

R MR I 5%, (B R I B, ROy E e A 3l i ds EAR I B BT 5
REH—A EIBURJA A TENZRIE R, EULECHEAS T4 R AR JA FARST SO B 3R 70 XS 745 £
PN R R VS — AN A, IENIRA L f AT KR B RO B B85 745 R I PR RE iy R AN B
B, EAMA S ZMA RS AT, A EN A AT RLBO) — M RE) &L

Changing the inner group to a noncapturing group—i.e., changing (\s+\S+) to (?:\s+\S+)—helps a bit, slashing
roughly 20%—45% off the time needed in Opera, IE, and Chrome, along with much slighter improvements in
Safari and Firefox. Still, a noncapturing group can't redeem this implementation. Note that the outer group cannot

be converted to a noncapturing group since it is referenced in the replacement string.

B EBAE O — AR —B . B (OsHSHIBECh (2:\sH\S+) —FF — i #E B, 7F Opera, IE
F1 Chrome 400 T K20 20%-45% K IR A], 7F Safari # Firefox FWAHMME. & ut, — N
IR ANRESE ARIIEA L. TEER, NP AANGER YIRS A, B CTEg S 2/ s h g T

Trimming Without Regular Expressions A 1ENIRIAREEY

Although regular expressions are fast, it's worth considering the performance of trimming without their help.

Here's one way to do so:

BRTENFRIEAARDE, EREMRHERACN I E BT 745 8 PERe . A — MO iEZ L

7

// trim 6
String.prototype.trim = function() {
var start =0,
end = this.length - 1,
ws =" \n\r\t\\xOb\xa0\u1680\u180e\u2000\u2001\u2002\u2003
\u2004\u2005\u2006\u2007\u2008\u2009\u200a\u200b\u2028\u2029%\u202f
\u205flu3000\ufeff";
while (ws.indexOf{(this.charAt(start)) > -1) {
start++;
H

while (end > start && ws.indexOf{this.charAt(end)) > -1) {

end--;
§

return this.slice(start, end + 1);

-

The ws variable in this code includes all whitespace characters as defined by ECMAScript 5. For efficiency

reasons, copying any part of the string is avoided until the trimmed version's start and end positions are known.

HEACHE A ws A2 B A ECMAScript 5 F5E R BT A28 A 747 T RCR IR, 7E13 2B B X E 4a A
2 A B AT P DL AT AT 3

It turns out that this smokes the regex competition when there is only a bit of whitespace on the ends of the
string. The reason is that although regular expressions are well suited for removing whitespace from the beginning
of a string, they're not as fast at trimming from the end of long strings. As noted in the section “When Not to Use
Regular Expressions” on page 99, a regex cannot jump to the end of a string without considering characters along
the way. However, this implementation does just that, with the second while loop working backward from the end

of the string until it finds a nonwhitespace character.

PR AR R RAA D ESKE, AL EWRIE X EASCE T R, RV ENRRE SR
KR TP AR CRER A, TR IR RIS DT AT R R AR . B (AR ARZAE AT IEN
RiL) —WHHRBIKAFE, — N IEWSRENAREBE R 775 8 IR B AN I 777 . AR, ARSEBLE
FEt, #EE A while fEA WA HRORE A BT E R — MRS P

Although this version is not affected by the overall length of the string, it has its own weakness: long leading
and trailing whitespace. That's because looping over characters to check whether they are whitespace can't match

the efficiency of a regex's optimized search code.

BRALUAZ PR B KM, HEAHOKSEA: CEFH KISKRZERK. PORM G E 74
FEANE B RAERCR EA I E WA ST Pt i = AR .

A Hybrid Solution JB&HHRTE

The final approach for this section is to combine a regex's universal efficiency at trimming leading whitespace

with the nonregex method's speed at trimming trailing characters.

AYFIRJG —ANINERFG B GG R, HENZRERB TR, AR ENRE e By

Vosan

o

// trim 7

String.prototype.trim = function() {
var str = this.replace(/M\s+/, ""),
end = str.length - 1,
ws = /\s/;
while (ws.test(str.charAt(end))) {

end--;

H

return str.slice(0, end + 1);

-

This hybrid method remains insanely fast when trimming only a bit of whitespace, and removes the
performance risk of strings with long leading whitespace and whitespaceonly strings (although it maintains the
weakness for strings with long trailing whitespace). Note that this solution uses a regex in the loop to check
whether characters at the end of the string are whitespace. Although using a regex for this adds a bit of
performance overhead, it lets you defer the list of whitespace characters to the browser for the sake of brevity and

compatibility.

HRBER AT, RS THEERTCH, JFAER TPERE LRI, LKA R TAT A, 2
AR TR RSB RIS A R IR BAT S D o EER, W EEmS T
A P LE M RRA SO 745 i R AR A 5 28, RV A IE WA i 1 — e i, (BB Sevr iR
PRI LA SCERE PR AR, AORKF AT R AT A A4

The general trend for all trim methods described here is that overall string length has more impact than the
number of characters to be trimmed in regex-based solutions, whereas nonregex solutions that work backwa

from the end of the string are unaffected by overall string length but more significantly affected by the amor

whitespace to trim. The simplicity of using two regex substitutions provides consistently respectable performance
cross-browser with varying string contents and lengths, and therefore it's arguably the best all-around solution.
The hybrid solution is exceptionally fast with long strings at the cost of slightly longer code and a weakness in

some browsers for long, trailing whitespace. See Table 5-2 for all the gory details.

AR E B e FER T ENWREARr E S, PR 8 B KRB BN 777 S P ge.
AR ENEZGE AT ZN PR R R R &R, AT 8 EKIEN, (B R 2B IR,
a7 B AT P P A TR R SUAE BT A B s AR BEANR] Y BRI FE (0 747 S I, BB RRUE P RE . I
I AT DA B T AR R T 5 o TR A IR T AR AR A AT ER IR il bR, HACH RACRS ARG, 7R
b EACTRRE AR INAEAE S fe R 5-2 TN .

Table 5-2. Cross-browser performance of various trim implementations

*5-2 AN trim BRASTE &R0 V2% E A

Browser Time [ms)®

Tim1® Tim2 Trim3 Trim4 Trim 5¢ Trim 6 Trim 7
lE7 B0/30 315312 547/539 36/42 28224 141015 18/409
IES T0/70 BUE 512/425 2630 216/222 4/334 12/205

Firefox 3 136/147 164174 650/600 10981525 1416/1488 21/151 20/144
Firefox3.5 130147 157/172 500/510 1004/1437 134411394 21/332 18/50
Safari3.23 253253 424/425 351359 27129 541/554 2140 5/80

Safari 4 37/37 EETEY) 69/68 3233 510/514 <059 418
Opera®.64 494/517 731/748 9066/9601 901/955 19532016 <0510 207241
Opera 10 75/75 94100 360370 46/46 514/514 2186 12/198

(hrome 2 78/78 66/68 100/10 59/59 140/142 1/37 24/55

a Reported times were generated by trimming a large string (40 KB) 100 times, first with 10 and then 1,000

spaces added to each end.

W5 I A B BT — /S K P A . (40KB) 100 IR AT A IIHE], SN FRELL 10 D8Ik, 1'000 /7%
AR,

b Tested without the /\s\s*$/ optimization.

TR S 22 PN \s*$ /404K,

¢ Tested without the noncapturing group optimization.
MR R AR R A L
Summary & %5

Intensive string operations and incautiously crafted regexes can be major performance obstructions, but the

advice in this chapter helps you avoid common pitfalls.

FEERI AT B BRAE AR P 2 5 TRk ST BE A2 12 BEPERERSEAG , (EAS T (R D30 v 24 B f st 4 i L ke

Ko

* When concatenating numerous or large strings, array joining is the only method with reasonable performance in

1IE7 and earlier.
YEEEEE RS BRI an, RS2 IE7 Ae R AR A B — BA & P fe i 772

« If you don't need to worry about IE7 and earlier, array joining is one of the slowest ways to concatenate strings.

Use simple + and += operators instead, and avoid unnecessary intermediate strings.

WRARANTOL TET e) SRR, B I R 12 A FR R MR K i — o A B+ A+ =B A2,
ARG AR AN R AT

* Backtracking is both a fundamental component of regex matching and a frequent source of regex inefficiency.
(]9 B A2 TR R IE UL BC D BERE A AL CER 70, SO IEWIZRIA SR R 1 s AL

* Runaway backtracking can cause a regex that usually finds matches quickly to run slowly or even crash your
browser when applied to partially matching strings. Techniques for avoiding this problem include making
adjacent tokens mutually exclusive, avoiding nested quantifiers that allow matching the same part of a string more

than one way, and eliminating needless backtracking by repurposing the atomic nature of lookahead.

(]9 2 7 e AR AR TE MR SR AR B A BRUCEE i3t)y, RO R R BRIV VL NE 775 SR st S Eusireetg
FLR W A B, BRI R BOR O, AR T, R R A — AT AR R ER 2 2 R
DCHC, i 2 R AT AT IE SR A 0 T Rp I 2 B A e 22 P13

* A variety of techniques exist for improving regex efficiency by helping regexes find matches faster and spend
less time considering nonmatching positions (see “More Ways to Improve Regular Expression Efficiency” on

page 96).

Pem ENFE R M BB TB M ENENZRGEAE Pt sk UL, DU e ARILEA . EAE PR 5 b
A L CE 2 38 IR WIRIE AR TE) D .

* Regexes are not always the best tool for the job, especially when you are merely searching for literal strings.
EMFREATEA TR AR RE TR, JUHAR AR A SUR AR 8.

¢ Although there are many ways to trim a string, using two simple regexes (one to remove leading whitespace and
another for trailing whitespace) offers a good mix of brevity and cross-browser efficiency with varying string
contents and lengths. Looping from the end of the string in search of the first nonwhitespace characters, or
combining this technique with regexes in a hybrid approach, offers a good alternative that is less affected by

overall string length.

BRAIRZ TR B8 H, AR ENRER (AT LR, BT
KERRARG) RO T AR BRI, AT ARRENKER AR NTRRREITS
PRI DA A, B NRE N PR ER S ENRER G SR, Bt 17— MREFH

BRITE, TR EH T 5 O K.

%752 Responsive Interfaces N4

There's nothing more frustrating than clicking something on a web page and having nothing happen. This
problem goes back to the origin of transactional web applications and resulted in the now-ubiquitous "please click

only once" message that accompanies most form submissions. A user's natural inclination is to repeat any ac

that doesn't result in an obvious change, and so ensuring responsiveness in web applications is an important

performance concern.

B2 bl T BRI ZR VS B A B B R A S NIRRT T 1A BRI 2 1 IR G I AT BAR Y
ANPLFE CICAEATE PRAC R BN 3 1 iE 20 B R IRACH B Bl F 7 B AR MR TR SR e AN R A W]
AR, BT CURA ER 94 D0, PR 0 i R Pt — N P BB OGHE R

Chapter 1 introduced the browser Ul thread concept. As a recap, most browsers have a single process that is
shared between JavaScript execution and user interface updates. Only one of these operations can be performed at
a time, meaning that the user interface cannot respond to input while JavaScript code is executed and vice versa.
The user interface effectively becomes "locked" when JavaScript is executing; managing how long your

JavaScript takes to execute is important to the perceived performance of a web application.

B A UL R . BRSRUL, KZHa s — R A R, e P AMESS AT
H2E: JavaScript £ 55 A0 77 S BT 55 o BN 2R A3 HA 00— AR LIRAT, A0 824 JavaScript
AR AT I L SRR ANBEXT AN A Y, e Z MR o B U, 24 JavaScript 3247, A7 A DI PUE”
1o BB JavaScript 3247 IR TR R 5T T AR REAR T 22

The Browser UI Thread ¥|%3% UI &8

The process shared by JavaScript and user interface updates is frequently referred to as the browser Ul thread
(though the term "thread" is not necessarily accurate for all browsers). The UI thread works on a simple queuing
system where tasks are kept until the process is idle. Once idle, the next task in the queue is retrieved and
executed. These tasks are either JavaScript code to execute or Ul updates to perform, which include redraws and
reflows (discussed in Chapter 3). Perhaps the most interesting part of this process is that each input may result in

one or more tasks being added to the queue.

JavaScript F11 UT 58 PL =2 (KRR B Wb 15 3 B UL 4672 CBRAR I A) i Sk - e i — 1A AN — &
HERfD o b UL ERRRHSEE —MA RIS RS LA, (ES BRI B 2 BN . — BN, BA
IR — MESI AT RANISAT o IXEEAT 55 A2 4T JavaScript A0S, B2 HAT UL 537, QfEELNE
Rl (FER=FINE) o R RS NESGR D 2B AR S8 E MES A

Consider a simple interface where a button click results in a message being displayed on the screen:

FE SRR AR T 5N MR R b B N

<html>
<head>
<title>Browser Ul Thread Example</title>
</head>
<body>
<button onclick="handleClick()">Click Me</button>
<script type="text/javascript">
function handleClick(){
var div = document.createElement("div");
div.innerHTML = "Clicked!";
document.body.appendChild(div);
§
</script>
</body>

</html>

When the button in this example is clicked, it triggers the Ul thread to create and add two tasks to the queue.
The first task is a UI update for the button, which needs to change appearance to indicate it was clicked, and the
second is a JavaScript execution task containing the code for handleClick(), so that the only code being executed
is this method and anything it calls. Assuming the UI thread is idle, the first task is retrieved and executed to
update the button's appearance, and then the JavaScript task is retrieved and executed. During the course of
execution, handleClick() creates a new <div> element and appends it to the <body> element, effectively making
another Ul change. That means that during the JavaScript execution, a new Ul update task is added to the queue

such that the Ul is updated once JavaScript execution is complete. See Figure 6-1.

240 LR SR, Bk R UL AR G P ME S FRR Il BIRA S 56— AT e fe il Ul —
EHRETBIINUE R E#IE T T, 3B - AMES% i JavaScript 217114, 7 handleClick ()1 hE

1BAT B ME— AR R XA THVER I AR E I R 777 R U A2 N, 38— ME SR & s AT L
FHEHIANL, SRJ5 JavaScript (54 ENEZAT . fEIE TS, handleClick()BIEE T —/MFT<div>To 5,
FiEMAE<body>roE b, HARZTI RS —IR Ul 2. W2 ¥i7E JavaScript BT 2, —NHTH Ul

SOBHE S BN IAERA S, 2 JavaScript 217582 A, ULIG P EH—IR. Wi 6-1.

Ul Thread

Figure 6-1. UI thread tasks get added as the user interacts with a page

K 6-1 75 Bt Ag B o) UL 2eF8sin— 44155

When all UI thread tasks have been executed, the process becomes idle and waits for more tasks to be added
to the queue. The idle state is ideal because all user actions then result in an immediate Ul update. If the user tries
to interact with the page while a task is being executed, not only will there not be an immediate UI update, but a
new task for a Ul update may not even be created and queued. In fact, most browsers stop queuing tasks for the Ul
thread while JavaScript is executing, which means that it is imperative to finish JavaScript tasks as quickly as

possible so as not to adversely affect the user's experience.

M ULERMES AT G, SRRIEANT IR, IR 2RSS 2+ . 2RI 2 EAR
1, A BT R RS 2051 R — Ik UL 3. R A P A B FEAR ST I 5 T Ag L, AV AT RV
UL 538, 1 HANSAH UL EHE SRS . SsE b, K2 El 3 7F JavaScript 217 I 45
1E UL ZRE BRI R IIAESS, A2 U JavaScript fE 55 L AURMREE A, UGS HI - RS X A R0 o

Browser Limits 3] %25 FR %]

Browsers place limits on the amount of time that JavaScript take to execute. This is a necessary limitation to
ensure that malicious coders can't lock up a user's browser or computer by performing intensive operations that
will never end. There are two such limits: the call stack size limit (discussed in Chapter 4) and the long-running
script limit. The long-running script limit is sometimes called the long-running script timer or the runaway script
timer, but the basic idea is that the browser keeps track of how long a script has been running and will stop it once

a certain limit is hit. When the limit is reached, a dialog is displayed to the user, such as the one in Figure 6-2.

W YT A% 7E JavaScript Iz AT I [8]_EREX T IR X2 — DAL ERIRE], #ies 1085 58 AGEEE T
SRR SRR E B L S A B BN L PRI IS PR RS BRG] CERDU R I 18) A]
AR KABAT IVA BRI I BEVRAE A AT A TE I de B0 R A TE IN s, F HCRRAS AR D) b 4810 %
— A RBEEATISTE], — BEE—E AL 2k It FRABIZIA RS, S as 2 m H P R — X HE,
e 6-2 fioR.

-ﬁ Stog running thie scrpl?

A sznpt on this page 12 causing Infemet Explorar to run siowly
if it continugs to run, your compJier may become
unrEsponEve.

Yes I-_—rﬂo

Figure 6-2. Internet Explorer's long-running script warning dialog is displayed when more than 5

million statements have been executed

K] 6-2 Internet Explorer [KIB1T A S X 1EHE, HiziT#Id 5 | 7 BRI 2R

There are two ways of measuring how long a script is executing. The first is to keep track of how many
statements have been executed since the script began. This approach means that the script may run for different
periods of time on different machines, as the available memory and CPU speed can affect how long it takes to
execute a single statement. The second approach is to track the total amount of time that the script has been
executing. The amount of script that can be processed within a set amount of time also varies based on the user's
machine capabilities, but the script is always stopped after a set amount of time. Not surprisingly, each brow

has a slightly different approach to long-running script detection:

AW FOPEN A REZA T & 5 — AN ER S A MATHRIEAT LURATE 2 i) 7R R
FEMATEAR RN G LRI RSB AT ANFII I AR, FTH AT CPU B3 AT LU — 4 S i G 3s AT
TEBRIS (] o 58 b7 G A IS AT IR IS TR 7EARe s I 18] 9 AT IS AT I B A = L R - B e ke 22
FMAR, ERARBREEMERNTE L, AT, SRS KT AR A 5E B ANA

* Internet Explorer, as of version 4, sets a default limit of 5 million statements; this limit is stored in a Windows
registry setting called

HKEY CURRENT USER\Software\Microsoft\InternetExplorer\Styles\MaxScriptStatements.

Internet Explorer, 7E55 4 f, WEEIARGIN 5 B 1458 R]; BRI/ HAE Windows M, ny{i

HKEY CURRENT USER\Software\Microsoft\InternetExplorer\Styles\MaxScriptStatements

* Firefox has a default limit of 10 seconds; this limit is stored in the browser's configuration

settings (accessible by typing about:config in the address box) as the dom.max_script_run_time key.

Firefox BRINREy 10 #084, BEFRBIAAAEN S S AOBCE B E A (FEHUIER A\ about:config) 4%

dom.max_script_run_time.

« Safari has a default limit of 5 seconds; this setting cannot be altered, but you can disable the timer by enabling

the Develop menu and selecting Disable Runaway JavaScript Timer.

Safari ERIAFREIN 5 M8h, IWIEANBEE, (HORATLLCPIE R, il 5 3) Develop SEHIFRE £ 4511
J45 JavaScript JE I 4%

* Chrome has no separate long-running script limit and instead relies on its generic

crash detection system to handle such instances.

Chrome BcA7 AT Y KAZAT ARG, 42 AC ACHUE)T T8 35 RS 3R S0 R AL B M SS9

* Opera has no long-running script limit and will continue to execute JavaScript code until it has finished, though,

due to Opera's architecture, this will not cause system instability while the execution is completed.

Opera Y& A KIBITHIARE], B 4k42121T JavaScript A HZE 52, BT Opera KI5, MiBITERIE
HASFHREIRE.

When the browser's long-running script limit is reached, a dialog is displayed to the user, regardless of any
other error-handling code on the page. This is a major usability issue because most Internet users are not
technically savvy and would therefore be confused about the meaning of the error message as well as which

option (to stop the script or allow it to continue) is appropriate.

20 T s A IR TR DA BRI e o A I, AT — SRR S T, T ANE BT B R AR A B R A AN
o XS EE AT PR, DO R B PR AR IEEOR, SR B TR, ANEE MY
ZIEFEAEI (I ERIA B S E 4R E081T) o

If your script triggers this dialog in any browser, it means the script is simply taking too long to complete its
task. It also indicates that the user's browser has become unresponsive to input while the JavaScript code is
continuing to execute. From a developer's point of view, there is no way to recover from a long-running script
dialog's appearance; you can't detect it and therefore can't adjust to any issues that might arise as a result. Clearly,

the best way to deal with long-running script limits is to avoid them in the first place.

AR B BASTE R YT e LAl T X TR, R AR L R I TR DR S AT 5% o B3R 3R 7 3
YEASTE JavaScript PS4k LB ATIRE T RIEM NN . WIFREW ARG, BH INEREKIBAT A 1 AE
FIZMIL, ORANBERIIN 2T, RN I EORG RAT RE I BRI) 8. B4R, KasAT A SR AF AL B A 02 o
FeE e

How Long Is Too Long? ZAAHEH“KA"?

Just because the browser allows a script to continue executing up to a certain number of seconds doesn't mean
you should allow it do so. In fact, the amount of time that your JavaScript code executes continuously should be
much smaller than the browser-imposed limits in order to create a good user experience. Brendan Eich, creator of
JavaScript, is quoted as having once said, "[JavaScript] that executes in whole seconds is probably doing

something wrong...."

W VA% VAR SE AT H 2 AN EDE], X IEAEME R DLV e IX . s b, R
JavaScript AR HFEHBAT IR L IR 8] B 24 120/ T30 Su A S iRy B o), DAGEE R FH P 485 . Brendan Eich,
JavaScript FEIEEE, 51 AR, “[JavaScript]iz 4T 338 JLFM TR AT GE MM T4 ... ”

If whole seconds are too long for JavaScript to execute, what is an appropriate amount of time? As it turns out,
even one second is too long for a script to execute. The total amount of time that a single JavaScript operation
should take (at a maximum) is 100 milliseconds. This number comes from research conducted by Robert Miller in
1968. Interestingly, usability expert Jakob Nielsen noted in his book Usability Engineering (Morgan Kaufmann,

1994) that this number hasn't changed over time and, in fact, was reaffirmed in 1991 by research at Xerox-PARC.

U SRR RSBt JavaSeript IBATSRULKK T, A A2 RIE LI [2 FE0iEm, BUE—Fb i 4
BATRAAB KK T 0 — A1 JavaScript B F R 248 H ¥ BN T (B RO 2 100 2285 IX B ARHE Robert
Miller 7% 1968 “E BT 5% . A 8 2, 7] I & 5% Jakob Nielsen 784t A3 /57T P T2)(Morgan Kaufmann,
1944) AR & —H0 7 BoA B TR O HERS T e, T H#si BAE 1991 4R Xerox-PARC (i 5k 2 H]
e BT RFERE T) ISR

Nielsen states that if the interface responds to user input within 100 milliseconds, the user feels that he is
"directly manipulating the objects in the user interface." Any amount of time more than 100 milliseconds means
the user feels disconnected from the interface. Since the Ul cannot update while JavaScript is executing, the user

cannot feel in control of the interface if that execution takes longer than 100 milliseconds.

Nielsen fi 1SR % 2 176 100 2256 PIREFE SN, FL P A 1 S e B 1R R R R RS 4,
B 100 ZERDEERRE F A A B D5 B TIEIT T T UI 75 JavaSeript JEFFIN R85, WSz A7 A
T 100 2285, PR AR BN I .

A further complication is that some browsers won't even queue Ul updates while JavaScript is executing. For
example, if you click a button while some JavaScript code is executing, the browser may not queue up the Ul
update to redraw the button as pressed or any JavaScript initiated by the button. The result is an unresponsive Ul

that appears to "hang" or "freeze."

B A1 A e W AS 7E JavaScript IBATH AN UL BEHTABAS . B, Wi SRAREEHELE JavaScript A4S
TBATH s, W S8 AT RN S B AL T 1 UL ST B, AT X A& A 3l
[} JavaScript {F:45 . HAFRE—TCMNIK UL Rk 8l R 45,

Each browser behaves in roughly the same way. When a script is executing, the UI does not update from user
interaction. JavaScript tasks created as a result of user interaction during this time are queued and then executed,
in order, when the original JavaScript task has been completed. UI updates caused by user interaction are
automatically skipped over at this time because the priority is given to the dynamic aspects of the page. Thus, a
button clicked while a script is executing will never look like it was clicked, even though its enclick handler will

be executed.

B A AT 0 R EA o 4 BIARAT IR, U ANBE A A B 50T . I JavaSeript AE 555 A AC
B4 RAEVEHPTRABNS, SRJE 2 JR46 JavaScript ££:55 58 BN A AR S5 HedhdT. HIP A0 3801 Ul
ST A sk, ROASES RS TR ERIZh AR . I, M ASIATIN o — %L A A
FIEBIL IR T, BMEER onclick AIA#IAT 1.

Even though browsers try to do something logical in these cases, all of these behaviors lead to a disjointed
user experience. The best approach, therefore, is to prevent such circumstances from occurring by limiting any
JavaScript task to 100 milliseconds or less. This measurement should be taken on the slowest browser you must

support (for tools that measure JavaScript performance, see Chapter 10).

RUE DRSS R IR L O M 28 2R s, (BT AR EAT 8 S8 T AR A5
IR IF)RR, B BRI JavaScript fE457E 100 Z2A0ECE /A] 58 i, 8 e ltb R Bl H B, X Fel
DN PR OR EE ST K AR PR R B s EAAT (OG- JavaScript MERERI T H, ZWH+E) .

Yielding with Timers Fi 5By 281k H B E]

Despite your best efforts, there will be times when a JavaScript task cannot be completed in 100 milliseconds
or less because of its complexity. In these cases, it's ideal to yield control of the Ul thread so that Ul updates may
occur. Yielding control means stopping JavaScript execution and giving the Ul a chance to update itself before

continuing to execute the JavaScript. This is where JavaScript timers come into the picture.

RERIR T B K% Ty, I8 JEA & JavaScript /145 KA & 42 PE R IANGEZE 100 =0l 58 /b I 18] P9 52 Al o
KRG, BRAR VR LR UT 2R, 48 UT 58 AT LB T . ik H =R 52 1E JavaScript 12
1T, 45 Ul RPN ST T, AR)5 B 484L121T JavaScript. T2 JavaScript jE B #SHEAN T AT ET .

Timer Basics &I 38 5EAH

Timers are created in JavaScript using either setTimeout() or setInterval(), and both accept the same
arguments: a function to execute and the amount of time to wait (in milliseconds) before executing it. The
setTimeout() function creates a timer that executes just once, whereas the setInterval() function creates a timer

that repeats periodically.

7t JavaScript Hf# A setTimeout()=X, setnterval)G E B 4%, PR — S8 —DERIT
RS, F—NMSITEZ AR N] CRATZRD) o setTimeout()BR 2B — /N E I 88 HIs4T—Ik, 1M

setInterval()e £ QI — A HIVE B RISATHIE R 45

The way that timers interact with the Ul thread is helpful for breaking up long-running scripts into shorter
segments. Calling setTimeout() or setInterval() tells the JavaScript engine to wait a certain amount of time and

then add a JavaScript task to the UI queue. For example:

SER #85 UL F872 T 7 A B T 0 K AT A O B . I A setTimeout() 24 setInterval()
EF JavaScript 5145 — 52 I R4 5 JavaScript 414574 D] UT BASI . it

function greeting(){
alert("Hello world!");
H

setTimeout(greeting, 250);

This code inserts a JavaScript task to execute the greeting() function into the UI queue after 250 milliseconds
have passed. Prior to that point, all other Ul updates and JavaScript tasks are executed. Keep in mind that the
second argument indicates when the task should be added to the UI queue, which is not necessarily the time that it
will be executed; the task must wait until all other tasks already in the queue are executed, just like any other t=<l-

Consider the following:

WARHS K E 250 =R 5, A UL BASIAE A —A JavaScript f£45384T greeting() &%, A S w0, A
A HA UL BB JavaScript {55 #87EE AT« THICAE, 9 DS EIR A R MY 2 AR 55 21 UL B2
2, FEAR PSRRI WA T o IXAME S b J055 3 BA Y) LA AT 25 H AT 2 J5 A BEBEAT . BIRF
TR 1

var button = document.getElementByld("my-button");
button.onclick = function() {
oneMethod();
setTimeout(function(){
document.getElementByld("notice").style.color = "red";

§>250);

When the button in this example is clicked, it calls a method and then sets a timer. The code to change the
notice element's color is contained in a timer set to be queued in 250 milliseconds. That 250 milliseconds starts
from the time at which setTimeout() is called, not when the overall function has finished executing. So if
setTimeout() is called at a point in time n, then the JavaScript task to execute the timer code is added to the Ul

queue at n + 250. Figure 6-3 shows this relationship when the button in this example is clicked.

FERRAMIT A A A A N, BT AN RERRRE N ER &8 . H T B2 notice LR AN
PO ETE—ENES B L R AE 250 M Z S5 InRIBAS . 250 2280 M A setTimeout()N JF4aTHEL, 1M
A NEEARECBAT S R TR T EL. W3R setTimeowt7E R (A1 5% n BRI, Az 47 2 B 241
JavaScript fE55 475 n+250 FIESZIANA UL BAF1 o 1B 6-3 573 AR 9] rb e B AR o BN P R AR A Z TRT R K R

Ul Thread

T T T T
s 0 50 100 350
!,‘Jfl-l ------------------------- # setlimeout() called Timer code
Time queited

Figure 6-3. The second argument of setTimeout() indicates when the new JavaScript task should be

inserted into the UI queue

Kl 6-3 setTimeout()F¥) 5 — 245 AT IR BT) JavaScript A1 4546 A 21| UT BA S o

Keep in mind that the timer code can never be executed until after the function in which it was created is
completely executed. For example, if the previous code is changed such that the timer delay is smaller and there is
another function call after the timer is created, it's possible that the timer code will be queued before the onclick

event handler has finished executing:

IO, ERES RS SR E R BOa T e Ja, AT R AT Bln, SR A
S M AT A, ARIFTERVEEN S 2 J5 XA 155 — e SENREA U AT AT RETE onclick F{FAbEE
SERZ BT BAS:

var button = document.getElementByld("my-button");
button.onclick = function() {
oneMethod();
setTimeout(function(){
document.getElementByld("notice").style.color = "red";

;> 50);

anotherMethod();

55

If anotherMethod() takes longer than 50 milliseconds to execute, then the timer code is added to the queue
before the onclick handler is finished. The effect is that the timer code executes almost immediately after the

onclick handler has executed completely, without a noticeable delay. Figure 6-4 illustrates this situation.

AR anotherMethod VFAAT INf [BIEEIE 50 AP, R4 5E I 45 AUFSRE 7 onclick AP 5E B BT IMAZIBAA
HE RIE % onclick AEHEAT 52, B N @A UL RIHRAT, TS5 AN B TR O SERR . 18] 6-4 Ui B 13X A o

In either case, creating a timer creates a pause in the Ul thread as it switches from one task to the next.
Consequently, timer code resets all of the relevant browser limits, including the long-running script timer. Further,
the call stack is reset to zero inside of the timer code. These characteristics make timers the ideal cross-browser

solution for long-running JavaScript code.

FEARM] — RGOS, B —AME I E G A UL R84, R E N —MES VRS N —MES. D,
SEIN S A B LA A AR S 0 b as PR, RSO AT A 8] Behh, AT AEE N S AU B A %
KR PEAT1S E B 38 BN KB AT JavaScript ARSI AR 115 3] B A5 A R 7 2

Ul Thread

Ul Queue
I] I I
& 0 S0 100 150
LT T TS > setlmeont() Timercode
ﬁmE talled queued

Figure 6-4. There may be no noticeable delay in timer code execution if the function in which

setTimeout() is called takes longer to execute than the timer delay

B 6-4 WA setTimeout()H s B AT T HAMAESS, FEINGEID E IN S8 AE I, 58 IN a4 CHE R A7 Bk AT,
E5 R EC B TS R

Timer Precision SEF283E A

JavaScript timer delays are often imprecise, with slips of a few milliseconds in either direction. Just because
you specify 250 milliseconds as the timer delay doesn't necessarily mean the task is queued exactly 250
milliseconds after setTimeout() is called. All browsers make an attempt to be as accurate as possible, but
oftentimes a slip of a few milliseconds in either direction occurs. For this reason, timers are unreliable for

measuring actual time passed.

JavaScript 7€ I g A INAEAEAHERR, P18 KL L. ALY IRIEE E NS E N 250 =40, FFANEIR
FES R TEW A setTimeout()Z Ja K& 250 M J ARSI P AW0 bE sl U T R ER, (HIEH 2k E
JUEEPNERS, SURECE . EROIZANRIA, 8 S AT S B I 1]

Timer resolution on Windows systems is 15 milliseconds, meaning that it will interpret a timer delay of 15 as
either 0 or 15, depending on when the system time was last updated. Setting timer delays of less than 15 can cause
browser locking in Internet Explorer, so the smallest recommended delay is 25 milliseconds (which will end up as

either 15 or 30) to ensure a delay of at least 15 milliseconds.

7t Windows 2% Fig B8 #0015 280, Wi —AME N 15 W N S e AR i 5 — IR R SR
B TR RIGHT I #6460 BY3E 15. WE E RS 23 4EHT /T 15 #47F Internet Explorer HH S 30 g 8iE, AL/
{HECH 25 = (LRI A A2 15 84300 DL % /0 15 =R 4R,

This minimum timer delay also helps to avoid timer resolution issues in other browsers and on other systems.

Most browsers show some variance in timer delays when dealing with 10 milliseconds or smaller.

SR /N SE I 5 S0 I A A I T i A) B 8% R EC At 454 22 48 L) 5 I 4 20 3) 00 K 22 B0 D i A
IS AR AEIN /N T 10 2 M0 I B 22 ek

Array Processing with Timers 7EZ0ZH 4038 H 4 A 2 i 3%

One common cause of long-running scripts is loops that take too long to execute. If you've already tried the
loop optimization techniques presented in Chapter 4 but haven't been able to reduce the execution time enough,
then timers are your next optimization step. The basic approach is to split up the loop's work into a series of

timers.

—ANE WIS AT ARG ER S TR KBTI A R AR C 250l TR B A H IR ML
A, B AREAEIRE W IRBAT I A, AR AER SRR~ — MU B HEEAD R 83 A A7)
2 5E N A5 81

Typical loops follow a simple pattern, such as:
ST PRI R

for (var i=0, len=items.length; i < len; i++){

process(items[i]);

-

Loops with this structure can take too long to execute due to the complexity of process(), the size of items, or
both. In my book Professional JavaScript for Web Developers, Second Edition (Wrox 2009), I lay out the two

determining factors for whether a loop can be done asynchronously using timers:

IXFERIEIR S5 s AT B [K R R =, processOI R Z4FE, items K/, B EFEA . FERIET
{Professional JavaScript for Web Developers) 2 i (Wrox 2009) 1, F%5 T j& 75 Al A i a5 UG 2R 1

PIASRE VR R -

* Does the processing have to be done synchronously?
AL T AR A JE [R) A5 b B 2

* Does the data have to be processed sequentially?

B Wb A A B 2

If the answer to both of these questions is "no," then the code is a good candidate for using timers to split up

the work. A basic pattern for asynchronous code execution is:

WFEX A RIS A A, A AR E TAEADE NS 0 T — AR D AR Bk

var todo = items.concat(); //create a clone of the original
setTimeout(function(){
//get next item in the array and process it
process(todo.shift());
//if there's more items to process, create another timer
if(todo.length > 0){
setTimeout(arguments.callee, 25);
} else {
callback(items);

}
1, 25);

The basic idea of this pattern is to create a clone of the original array and use that as a queue of items to
process. The first call to setTimeout() creates a timer to process the first item in the array. Calling todo.shift()
returns the first item and also removes it from the array. This value is passed into process(). After processing the
item, a check is made to determine whether there are more items to process. If there are still items in the todo
array, there are more items to process and another timer is created. Because the next timer needs to run the same
code as the original, arguments.callee is passed in as the first argument. This value points to the anonymous

function in which the code is executing. If there are no further items to process, then a callback() function is

called.

KRR A AR G — N R B R e, et B %R . i —RIMH] setTimeout() B —
ANTE I AR AL BA S h) 2 — 0. T todo.shift()i [A1E 2 — IR A 4 & B AL B . IR (EAE A 2
HAe45 process().)5, RE R HIEAE LG ELI. WR todo BAFIFIEH WA, IBARER—E
e DA RASE N 85 & 22 AT R ARG, BrLUSR — S 8te A arguments.callee. BUAEFR R 2HT "
AT A4 8. WRANPIAT A RR 240, F9IRH callback()pi %5

Because this pattern requires significantly more code that a regular loop, it's useful to encapsulate this

functionality. For example:

IR SR AR L R 2 2 A0RS, PRIk ThAeds il k. .

function processArray(items, process, callback){
var todo = items.concat(); //create a clone of the original
setTimeout(function(){
process(todo.shift());
if (todo.length > 0){
setTimeout(arguments.callee, 25);
} else {
callback(items);

}
1, 25);

The processArray() function implements the previous pattern in a reusable way and accepts three arguments:
the array to process, the function to call on each item, and a callback function to execute when processing is

complete. This function can be used as follows:

processArray () e £ LL— Rl 15 AUSE I T OBRTIASEAR, JFE =24 Rl B8, XA
JHFIACEE R K, AR IR A5 AN AT ([P e e 12 BT T

var items = [123, 789, 323, 778, 232, 654, 219, 543, 321, 160];
function outputValue(value){
console.log(value);
§
processArray(items, outputValue, function(){

console.log("Done!");

s

This code uses the processArray() method to output array values to the console and then prints a message
when all processing is complete. By encapsulating the timer code inside of a function, it can be reused in multiple

places without requiring multiple implementations.

IR A processArray() 7 2R Z AL fan i 2 260, 4 BT A7 AL BEGE AN FEAT B — 40 B Al DR 2 I
AU REAE — N B, ETEZ AT 2 KLU .

Splitting Up Tasks 43 #4E55

What we typically think of as one task can often be broken down into a series of subtasks. If a single function
is taking too long to execute, check to see whether it can be broken down into a series of smaller functions that
complete in smaller amounts of time. This is often as simple as considering a single line of code as an atomic task,
even though multiple lines of code typically can be grouped together into a single task. Some functions are

already easily broken down based on the other functions they call. For example:

FAMTEF ARG —MEF DR R TAES . MR DR BESATIN R, A EE ER A LU
RV TN R SE BN R e ks —ATACHS T R AE — AN R TALSS, AT G MR
ARALAE S o L BT T e BOR FH BT T 2. Bl

function saveDocument(id) {
//save the document
openDocument(id)
writeText(id);
closeDocument(id);
//update the UI to indicate success

updateUI(id);

-

If this function is taking too long, it can easily be split up into a series of smaller steps by breaking out the
individual methods into separate timers. You can accomplish this by adding each function into an array and then

using a pattern similar to the array-processing pattern from the previous section:

R A BCEATINIRR K, ERT LR B BRI 3R, EIRNT 5 e e N ds ol e R mT LUK A
AR BTN — N, SRR AT AT AR R 2 A B A A

function saveDocument(id) {
var tasks = [openDocument, writeText, closeDocument, updateUTI];
setTimeout(function(){
//execute the next task
var task = tasks.shift();
task(id);
//determine if there's more
if (tasks.length > 0){
setTimeout(arguments.callee, 25);

}
1, 25);

This version of the function places each method into the tasks array and then executes only one method with
each timer. Fundamentally, this now becomes an array-processing pattern, with the sole difference that processing
an item involves executing the function contained in the item. As discussed in the previous section, this pattern

can be encapsulated for reuse:

RAARG A THEINMES A, RIGTER N EIN & i — N rik. WRA BV, SU7E e RO #
SRR, R — i ANE: Ao O S it . BT AT, AR AT A

function multistep(steps, args, callback){
var tasks = steps.concat(); //clone the array
setTimeout(function(){
//execute the next task
var task = tasks.shift();
task.apply(null, args || []);

//determine if there's more

if (tasks.length > 0){
setTimeout(arguments.callee, 25);
} else {

callback();

}
1, 25);

The multistep() function accepts three arguments: an array of functions to execute, an array of arguments to

pass into each function when it executes, and a callback function to call when the process is complete. This

function can be used like the following:

multistep() B8 I =S8 I THATHI AL, B EER IS B S A4, B A R
WA e . R BT R

function saveDocument(id) {

var tasks = [openDocument, writeText, closeDocument, updateUI];
multistep(tasks, [1d], function(){

alert(""Save completed!");

1)

Note that the second argument to multistep() must be an array, so one is created containing just id. As with

array processing, this function is best used when the tasks can be processed asynchronously without affecting the

user experience or causing errors in dependent code.

RS multistepOF 2R NS EL SR, BN AOE A id. IEWmEAIACEIEE, IR
B ATAR A AR5 T LR D AL BT AN RS M] (AR o 5 SRR R A

Timed Code [RAiZ4TE

Sometimes executing just one task at a time is inefficient. Consider processing an array of 1,000 items for
which processing a single item takes 1 millisecond. If one item is processed in each timer and there is a delay of
25 milliseconds in between, that means the total amount of time to process the array is (25 + 1) x 1,000 = 26,000
milliseconds, or 26 seconds. What if you processed the items in batches of 50 with a 25-millisecond delay
between them? The entire processing time then becomes (1,000 / 50) x 25 + 1,000 = 1,500 milliseconds, or 1.5
seconds, and the user is still never blocked from the interface because the longest the script has executed

continuously is 50 milliseconds. It's typically faster to process items in batches than one at a time.

AR APAT —MMESE A E . FIEIXFE—FEI: A — A 1000 NIRELE, &b —A
T2 1 =8 MRAFAE R S AL NI, FEPIRAL IR 2 R[] R 25 280, 84 AT A2))
FE(25+ 1) x 1'000 = 26'000 Z=F>, HEtRE 26 #b. WRSGHLALIE 50 4>, Stz (ARG 25 B arEle?
AL IEFRAZ (1'000 / 50) x 25 +1'000 = 1'500 Z&F5, W& 1.5 %, 1 H AP WA 500 St P 2E,
NEK A AT RSl T 50 2280, 05 kB AT b ok 3 — AN

If you keep 100 milliseconds in mind as the absolute maximum amount of time that JavaScript should be
allowed to run continuously, then you can start optimizing the previous patterns. My recommendation is to cut
that number in half and never let any JavaScript code execute for longer than 50 milliseconds continuously, just to

make sure the code never gets close to affecting the user experience.

IR RICAE JavaScript W IEELLEAT KR KIS A 100 280, 4R URASE AT . SRi0@ B0 %
AP B, ANELRAEAT JavaScript fURSFFSHTHIT 50 280, RN T iR ARSI A 2 5 m A
JRIN -

It's possible to track how long a piece of code has been running by using the native Date object. This is the

way most JavaScript profiling works:

AR A Date X G EREAA CAS HIIEAT IR 8] o 322 K22 £ JavaScript 7387 T H TR A RO A% 5 5K

var start = +new Date(),
stop;
someLongProcess();

stop = +new Date();

if(stop-start < 50){
alert("Just about right.");
} else {

alert("Taking too long.");

Since each new Date object is initialized with the current system time, you can time code by creating new
Date objects periodically and comparing their values. The plus operator (+) converts the Date object into a
numeric representation so that any further arithmetic doesn't involve conversions. This same basic technique can

be used to optimize the previous timer patterns.

HI B SBT QI Data X5 L4 TR SN R TG40, 7R FT LR I 62 B Data X3 S0F LU EATHE
LIZREAASIEATIN AL, IS (+) K Data M By — MY, fR/a S s Ao A D fE e 1. X
— AR LA AT 72 I e AR .

The processArray() method can be augmented to process multiple items per timer by adding in a time check:

processArray() /7 18— NS TRRCILE], PTAERRS E I 48 AT 2 AR I

function timedProcessArray(items, process, callback){
var todo = items.concat(); //create a clone of the original
setTimeout(function(){
var start = +new Date();
do {
process(todo.shift());
} while (todo.length > 0 && (+new Date() - start < 50));
if (todo.length > 0){
setTimeout(arguments.callee, 25);
} else {

callback(items);

}

¥, 25);

-

The addition of a do-while loop in this function enables checking the time after each item is processed. The
array will always contain at least one item when the timer function executes, so a post-test loop makes more sense
than a pretest one. When run in Firefox 3, this function processes an array of 1,000 items, where process() is an
empty function, in 38—43 milliseconds; the original processArray() function processes the same array in over

25,000 milliseconds. This is the power of timing tasks before breaking them up into smaller chunks.

PEpA RN > do-while 3, "EFERRAN BRI 2 JE A I IR 18] o 58 I i 2 B AT IN S0 A A7
T A=A FrCLE MG ER L AT TE &3 . {F Firefox 3 1, W% process()/& — M ¥, Kby —4
1'000 IR PAEA T 5L 38 - 34 2805 JEUAIK processArray() i B Ab 3 [/ — NS4 75 256 25'000). Xk
FEE RS I AL, 8GR 55 20 W Rt /K

Timers and Performance EN 38518k

Timers can make a huge difference in the overall performance of your JavaScript code, but overusing them
can have a negative effect on performance. The code in this section has used sequenced timers such that only one
timer exists at a time and new ones are created only when the last timer has finished. Using timers in this way will

not result in performance issues.

SEIN S AEPRAT JavaScript ARG REAVERERBLM B K Z 57, (B A G TR Re A g . A7y
TR AE N G20, R — I R —ASE N A, R AT A E N G 45U A G — B e
o BUIZHTT AT 52 I s A iy RV 58 i e

Performance issues start to appear when multiple repeating timers are being created at the same time. Since
there is only one UI thread, all of the timers compete for time to execute. Neil Thomas of Google Mobile

researched this topic as a way of measuring performance on the mobile Gmail application for the iPhone and

Android.

Y2 AEEPE N SR RO S A RE N . A RA—A ULZRE, A s a8 w4 s AT I]
Google Mobile [¥] Neil Thomas 4 It jn] @UE 4 I &1k BE K77 ¥EATHT ST, #14F iPhone 1 Android HizAT IS

7)) Gmail F£F .

Thomas found that low-frequency repeating timers—those occurring at intervals of one second or
greater—had little effect on overall web application responsiveness. The timer delays in this case are too large to
create a bottleneck on the UI thread and are therefore safe to use repeatedly. When multiple repeating timers are
used with a much greater frequency (between 100 and 200 milliseconds), however, Thomas found that the mobile

Gmail application became noticeably slower and less responsive.

Thomas & BUEATZ) 25 & 5 1 48 [EIF&EE 1 #0801 FP LA b LA S M N P GO A R Y. 3K
TG LT 2 I 28 IR E AT UL R A s, Mt sm 8, BENEEEH e iHE
SR (EBETE 100 2] 200 ZF 2 8] , Thomas KILFEZE) Gmail 1278 B8, RNEZE,

The takeaway from Thomas's research is to limit the number of high-frequency repeating timers in your web
application. Instead, Thomas suggests creating a single repeating timer that performs multiple operations with

each execution.

Thomas BT ST F S, ZEFERIK R DT A PR e iR R E N S04 . [, Thomas X 81
AP E RN &, BRRBATZ AR

Web Workers M T A2

Since JavaScript was introduced, there has been no way to execute code outside of the browser Ul thread. The
web workers API changes this by introducing an interface through which code can be executed without taking
time on the browser Ul thread. Originally part of HTML 5, the web workers API has been split out into its own
specification (http://www.w3.org/TR/workers/); web workers have already been implemented natively in Firefox

3.5, Chrome 3, and Safari 4.

[JavaScript #E4= LISK, LB INETEN W ds UL LR 2 AMaqT AU . BT T8 AP B8 1 I FIR
Ol EHIATAEL, RTINS UL AR I (e 14 &40 HTML 5 #)—#54>,

L NERFE API B8 73 B8 HY 25 BN A7 ALY Chttp://www.w3.org/TR/workers/) o M 11 T N 262 EL£8 4% Firefox

3.5, Chrome 3, # Safari 4 JR 45280 .

Web workers represent a potentially huge performance improvement for web applications because each new
worker spawns its own thread in which to execute JavaScript. That means not only will code executing in a

worker not affect the browser UI, but it also won't affect code executing in other workers.

¥ 5T T NERAE R A TR R A e — M E I B YRS T, RDAOHT I T AN ASAE B &2 hisdT
JavaScript. XEIKE, TALREF BB AMUN SR s UL i B A e T LR+
BATHIAN.

Worker Environment T A\ZFEiziTHIE

Since web workers aren't bound to the UI thread, it also means that they cannot access a lot of browser
resources. Part of the reason that JavaScript and Ul updates share the same process is because one can affect the
other quite frequently, and so executing these tasks out of order results in a bad user experience. Web workers
could introduce user interface errors by making changes to the DOM from an outside thread, but each web worker
has its own global environment that has only a subset of JavaScript features available. The worker environment is

made up of the following:

HI W T AR AGEE UL 268, R MERE C AT ANREDT IR 22 3 i ds 31 JavaScript A1 UL 58T
= [AR R R CATZ W VA%, i RIX AR 55 R P S O R A 7 R 5 . 9 BT T A2
FZ 5 DOM 5 FZUH - FHm s, (AR U E NSRRI B 2R IsiTHEE, R4 JavaScript £
=TT T AKRRRIBIT G T AIER 7 2R

* A navigator object, which contains only four properties: appName, appVersion, userAgent, and platform
—ags g, RA&VUANEYE: appName, appVersion, userAgent, F1 platform

* A location object (same as on window, except all properties are read-only)
—~ location X% (Ml window H[—Ff, FUZRTAEIEAZE KRR

* A self object that points to the global worker object

—> self W% f5 2/ T AL 4

* An importScripts() method that is used to load external JavaScript for use in the worker

— importScripts() /775, 8 T NZFE A LUINZ A5 JavaScript S5

* All ECMAScript objects, such as Object, Array, Date, etc.

FT ECMAScript X%, 1441 Object, Array, Data, 5%.

* The XMLHttpRequest constructor

XMLHttpRequest 141 #%

* The setTimeout() and setInterval() methods

setTimeout()F setInterval() /772

* A close() method that stops the worker immediately

close()J7yZm] 37 R4 B T N2 F2

Because web workers have a different global environment, you can't create one from any JavaScript code. In
fact, you'll need to create an entirely separate JavaScript file containing just the code for the worker to execute. To

create a web worker, you must pass in the URL for the JavaScript file:

PR 199 5T T NERRR A AN R 42 JRIs AT 305, IRANBETE JavaScript ARSI . FsE b, (RFFEEIE 4
SEAMAL I JavaScript SO, A& ALEAE T NLARE BTN .. ZOIE M T T LR, fRUIIEAZA

JavaScript 34 #) URL:

var worker = new Worker("code.js");

Once this is executed, a new thread with a new worker environment is created for the specified file. This file is
downloaded asynchronously, and the worker will not begin until the file has been completely downloaded a

executed.

UEACHS —EAAT, B oA SO B — SRR — AT DRI IS AT . IbSC i P T, |
BN BOFBIT LB A R B TR

Worker Communication T AZEAH.

Communication between a worker and the web page code is established through an event interface. The web
page code can pass data to the worker via the postMessage() method, which accepts a single argument indicating
the data to pass into the worker.There is also an onmessage event handler that is used to receive information from

the worker. For example:

TR DA O TR S AT A HL [DT URS AT IS postMessage() /7 % 7] T A SR A% 1840
NS, BIEiSGE TALREREIRE. 1LAh, £ T NLRBEHIEAT onmessage FHF I T-H(E B
Bl

var worker = new Worker("code.js");

worker.onmessage = function(event) {
alert(event.data);

s

worker.postMessage("Nicholas");

The worker receives this data through the firing of a message event. An onmessage event handler is defined,
and the event object has a data property containing the data that was passed in. The worker can then pass

information back to the web page by using its own postMessage() method:

T AZFE M message FHAFFEWEE . X B T —> onmessage G, FANZEEEG— data J&
PEFERE N E . T AR il © B S postMessage() /7 vE K5 B IR 8145 T .

//inside code.js
self.onmessage = function(event){

self.postMessage("Hello, " + event.data + "!");

55

The final string ends up in the onmessage event handler for the worker. This messaging system is the only way

in which the web page and the worker can communicate.

AT B G R T T ANEFE M onmessage S AR VH B R S0 A2 TR T ANZRFE 2 [ME— 128 B4 .

Only certain types of data can be passed using postMessage(). You can pass primitive values (strings,
numbers, Booleans, null, and undefined) as well as instances of Object and Array; you cannot pass any other
data types. Valid data is serialized, transmitted to or from the worker, and then deserialized. Even though it seems
like the objects are being passed through directly, the instances are completely separate representations of the

same data. Attempting to pass an unsupported data type results in a JavaScript error.

HA BRI H s 7T LM postMessage()/f&i#. (RATLMEE# R AG{H (string, number, boolean, null
A undefined) , WATLAEE Object M Array (LB, HERABAISYF 1o ARAIRHTFIIL, o ABifk
MR, R RPHIt. AMER XSRS Tk, 9ol SR R — MR 58 2 ki . ik
Bl A 32— ANSCRF RO B 278K & 3 JavaScript £1% -

Loading External Files HN#ER4MIB3CHF

Loading extra JavaScript files into a worker is done via the importScripts() method, which accepts one or
more URLs for JavaScript files to load. The call to importScripts() is blocking within the worker, so the script
won't continue until all files have been loaded and executed. Since the worker is running outside of the Ul thread,

there is no concern about Ul responsiveness when this blocking occurs. For example:

T NFRIE T importScripts() /7 VA M Z M JavaScript 344, BEW—EZ > URL 40, F8H 2N
I JavaScript ORI HE. T ANZEFE PABE ZE 77 0 A importScripts(), B 2TA A e AT 2)5,
WA A HEHE1T . T L ALRETE Ul 22 AMNETT, IXFRPHIEA S UL M. 5.

//inside code.js
importScripts("filel.js", "file2.js");
self.onmessage = function(event){

self.postMessage("Hello, " + event.data + "!");

The first line in this code includes two JavaScript files so that they will be available in the context of the

worker.

AR 28 —AT R & P JavaScript SCIF, BATRKAE T NG s .

Practical Uses SEfRFHig

Web workers are suitable for any long-running scripts that work on pure data and that have no ties to the
browser Ul This may seem like a fairly small number of uses, but buried in web applications there are typically

some data-handling approaches that would benefit from using a worker instead of timers.

W T NG & TR 1, B S NEE UL S R T A . B ERTEAK, T
TN IR PR A — LR A TR 2 28 T TAEAE, AV E R 5.

Consider, for example, parsing a large JSON string (JSON parsing is discussed further in Chapter 7). Suppose
that the data is large enough that parsing takes at least 500 milliseconds. That is clearly too long to allow
JavaScript to run on the client, as it will interfere with the user experience. This particular task is difficult to break

into small chunks with timers, so a worker is the ideal solution. The following code illustrates usage from a web

page:

FHIEIZFE BT, T — MBS JSON #4575 (JSON MR 72 S i eh LRt o B 2%
K, BT 500 VA BT MAFNTAEST . AR BARIHRIAR 1 BL2 T ANBE Se i JavaScript 7E%¢ 77 i E124T
Er POVES T K. RSB T8 N asi/NEAESS, BTUL T NS Oh BAR R)y
Fo NG U TEAEM TN A

var worker = new Worker("jsonparser.js");
//when the data is available, this event handler is called
worker.onmessage = function(event) {

//the JSON structure is passed back

var jsonData = event.data;

//the JSON structure is used

evaluateData(jsonData);

s
//pass in the large JSON string to parse

worker.postMessage(jsonText);

The code for the worker responsible for JSON parsing is as follows:

T LA 71 57 JSON f#dT, iR

//inside of jsonparser.js
//this event handler is called when JSON data is available
self.onmessage = function(event){

//the JSON string comes in as event.data

var jsonText = event.data;

//parse the structure

var jsonData = JSON.parse(jsonText);

//send back to the results

self.postMessage(jsonData);

55

Note that even though JSON.parse() is likely to take 500 milliseconds or more, there is no need to write any
additional code to split up the processing. This execution takes place on a separate thread, so you can let it run for

as long as the parsing takes without interfering with the user experience.

THERL, B JSON.parse() I RERR 22 500 2V B 22 IHIA], AT 0 BN BE 2 ACRS R 20 Ak B A
VEAE B R A A NI RE R, B DUURAT DULLEE — BAEAT Sse i R A T - 14 5%

The page passes a JSON string into the worker by using postMessage(). The worker receives the string as
event.data in its onmessage event handler and then proceeds to parse it. When complete, the resulting JSON
object is passed back to the page using the worker's postMessage() method. This object is then available as
event.data in the page's onmessage event handler. Keep in mind that this presently works only in Firefox 3.5 and

later, as Safari 4 and Chrome 3's implementations allow strings to be passed only between page and worker.

TUHI{E] postMessage() —1> JISON P47 s 545 T A fE . T ANEARA/EE /) onmessage FAFAJAK i 2]
KA E event.data, SRJEFFAEIENTE . S S BT AR 11 JSON X St T AZ6F2 11 postMessage()
JHEALB BT o AR5 R BAE Y DU onmessage SRR event.data. 1 IC(E, M TR HAETE Firefox 3.5
M A Iz4T, 1 Safari 4 M1 Chrome 3 77, BTN T ALARZ 8] X fo P Lid w45 iR

Parsing a large string is just one of many possible tasks that can benefit from web workers. Some other

possibilities are:
T — MR R R Z 26 TR CALBRIMES 2 —. HEmaZamimsun’:
* Encoding/decoding a large string
G/ RS — N KA
» Complex mathematical calculations (including image or video processing)
BB ris . (S BB E AL D
* Sorting a large array
e REAHR

Any time a process takes longer than 100 milliseconds to complete, you should consider whether a worker

solution is more appropriate than a timer-based one. This, of course, is based on browser capabilities.

TR 100 ZMPATALEE, HOAY 7% i8 T NIRRT R R IE T BN G T REEE. R, %
TSR SR AR

Summary & %5

JavaScript and user interface updates operate within the same process, so only one can be done at a time. This
means that the user interface cannot react to input while JavaScript code is executing and vice versa. Managing
the UI thread effectively means ensuring that JavaScript isn't allowed to run so long that the user experience

affected. To that end, the following should be kept in mind:

JavaScript F1FH - S0 SR [R)— AR ST, (R — B Z) R A 2ot —> 0] BUZAT « IX AR F 2 JavaScript
A IEAEBATIN, F7 S ANGEN M AN, SRR AROME B UL A2 2 240 fx JavaScript A BEIZAT
R E], LG e RS . e, A0 L

* No JavaScript task should take longer than 100 milliseconds to execute. Longer execution times cause a

noticeable delay in updates to the UI and negatively impact the overall user experience.

JavaScript BT I (A ANBAZGEE 100 2280 5K Iz 4TI 18] S 250 UL 583 AT S0t (1A, AT x B
PP RS 7 A AT S o

* Browsers behave differently in response to user interaction during JavaScript execution.
Regardless of the behavior, the user experience becomes confusing and disjointed when JavaScript takes a long

time to execute.

JavaScript IBAT I, J SLAs N P A H AT A AR 57 o BRI, JavaScript K A&7 5 2UH
ST AL o

* Timers can be used to schedule code for later execution, which allows you to split up long-running scripts into a

series of smaller tasks.

SET A% AT T 2 RS HER AT, EAEAS IR AT LRI AT BIA X iRl — RSBV MIIAE S5

* Web workers are a feature in newer browsers that allow you to execute JavaScript code outside of the Ul thread,

thus preventing Ul locking.

W BT NZRFERBT 2C N & A SCRFRORFPE e SO VHIRAE UT AR 2 AMEAT JavaScript ARG T8 S BiE Ul

The more complex the web application, the more critical it is to manage the Ul thread in a proactive manner.

No JavaScript code is so important that it should adversely affect the user's experience.

W G, HFR PR 2%, AR B RS 1 UL BRI BB S B2 . WA {4 JavaScript 185 AT PLIEE Z 3 7
VFse i P AREG FE o

F-LE Ajax =P JavaScript f1 XML

Ajax is a cornerstone of high-performance JavaScript. It can be used to make a page load faster by delaying
the download of large resources. It can prevent page loads altogether by allowing for data to be transferred
between the client and the server asynchronously. It can even be used to fetch all of a page's resources in one
HTTP request. By choosing the correct transmission technique and the most efficient data format, you can

significantly improve how your users interact with your site.

Ajax JE I RE JavaScript FIFEAT. BF DUB SER K B R TN g k. EE I AE R 7 i A
S IR DA B, 8 G T AR AN B3R A T7E —Ik HTTP 15K A U S (o 5E 9. @ id 1k
FEIERA AL HEA A 5 AT R R A% 3, ARRT LU 25 e 7 5 ol 22 TR 9 BB

This chapter examines the fastest techniques for sending data to and receiving it from the server, as well as the

most efficient formats for encoding data.

A5 GRS A B B R IR, DU By R B i e 4% 3

Data Transmission ZIB(EH]

Ajax, at its most basic level, is a way of communicating with a server without unloading the current page; data
can be requested from the server or sent to it. There are several different ways of setting up this communication
channel, each with its own advantages and restrictions. This section briefly examines the different approaches and

discusses the performance implications of each.

Ajax, TECRIEARIRIM, &Pk 5 IS5 d 8 T AN TS 3T ST 9%, Bl aT MO 5545 345 BRI
LRSS 4% . AT MOANRI T IE X AE B, AFFOERAT B CRIMIRE . AT 2) 4hiK 4
ARTE, FFTie % BRHERER .

Requesting Data &K EIE
There are five general techniques for requesting data from a server:

A3 DA BRI [0 IR 55 s TR SR E s -

* XMLHttpRequest (XHR)

+ Dynamic script tag insertion A IASRZEHHA
* iframes

* Comet

+ Multipart XHR Z 53 XHR

The three that are used in modern high-performance JavaScript are XHR, dynamic script tag insertion, and
multipart XHR. Use of Comet and iframes (as data transport techniques) tends to be extremely situational, and

won't be covered here.

TEIAC Sk B8 JavaScript A I =FHR 2 XHR, B MANRZ4 AT 250719 XHR. {1/ Comet
M iframe (M GEARALRBA) AR WL, AEXHEITIE.

XMLHttpRequest

By far the most common technique used, XMLHttpRequest (XHR) allows you to asynchronously send and
receive data. It is well supported across all modern browsers and allows for a fine degree of control over both the
request sent and the data received. You can add arbitrary headers and parameters (both GET and POST) to the
request, and read all of the headers returned from the server, as well as the response text itself. The following is an

example of how it can be used:

H AT 77, XMLHttpRequest (XHR) FIRF WO E I . FrA IG5 4540 BE S AR £ 31 52
e, 1 HAENE KRG A0 P R A T SR B Bl . AT LA & SRRSO R IR A5 B 24 (5
GET f1 POST) , FFilX MR S5 s R ISk AR B, BUAM R SCAR A 5 UM A7 1

var url = '/data.php';
var params = [
'1d=934875',
Timit=20"
IE
var req = new XMLHttpRequest();

req.onreadystatechange = function() {

if (req.readyState === 4) {
var responseHeaders = req.getAllResponseHeaders(); // Get the response headers.
var data = req.responseText; / Get the data.

// Process the data here...

§
req.open('GET", url +'?' + params.join('&"), true);
req.setRequestHeader("X-Requested-With', 'XMLHttpRequest'); // Set a request header.

req.send(null); // Send the request.

This example shows how to request data from a URL, with parameters, and how to read the response text and

headers. A readyState of 4 indicates that the entire response has been received and is available for manipulation.

UEBZ 7R T4 N URL 38R 5l , (25, DAS A B O W AR SONTSL {5 R e readyState 55 4 387
HEANR Y AR L C 2O e T T ERAT .

It is possible to interact with the server response as it is still being transferred by listening for readyState 3.

This is known as streaming, and it is a powerful tool for improving the performance of your data requests:

readyState 551 3 WIZRZRILIN IE7E 5 AR 54820 L, W NARSOIEAE M Z o XU ATIBI I, ER
R R RER K T R

req.onreadystatechange = function() {
if (req.readyState === 3) { // Some, but not all, data has been received.

var dataSoFar = req.responseText;

}

else if (req.readyState === 4) { // All data has been received.

var data = req.responseText;

Because of the high degree of control that XHR offers, browsers place some restrictions on it. You cannot use
XHR to request data from a domain different from the one the code is currently running under, and older versions
of [E do not give you access to readyState 3, which prevents streaming. Data that comes back from the request is

treated as either a string or an XML object; this means large amounts of data will be quite slow to process.

HiF XHR #2445 7 RO e, S ds e B LB RE. IRABAEA XHR ATz AT (AR5
Sz SR B, T HZ AR IE MAEAE readyState 3, TASCHFIR . I RIZ Bl BHR 5 — T 7
B —/> XML M ZIBFEXT R, REWE LK B SA2E.

Despite these drawbacks, XHR is the most commonly used technique for requesting data and is still the most

powerful. It should be the one you look to first.

R IZEEE S, XHR IHRZHH AREREIESAR, WRRMEAN . NSO IR E L.

POST versus GET when using XHR. {ff XHR i, NAFF POST &R GET

When using XHR to request data, you have a choice between using POST or GET. For requests that don't
change the server state and only pull back data (this is called an idempotent action), use GET. GET requests are

cached, which can improve performance if you're fetching the same data several times.

4 XHR 15 sREGE T, PRATLAESE POST 58 GET. U1 SRIESR AN AR 45 s iR A FURBRIEUR (U
TERSESNE) WHE GET. GET iRk, QR AR 2 RARHUH A (K5 T2 s e -

POST should be used to fetch data only when the length of the URL and the parameters are close to or exceed
2,048 characters. This is because Internet Explorer limits URLSs to that length, and exceeding it will cause your

request to be truncated.

HA Y URL MZH R L T 2'048 2 R/F I A Al POST 42 HU 24 « K4 Internet Explorer [#] URL
PR, KK SEUER (S50 Rk,

Dynamic script tag insertion ZIZSEALRERHAN

This technique overcomes the biggest limitation of XHR: it can request data from a server on a different
domain. It is a hack; instead of instantiating a purpose-built object, you use JavaScript to create a new script tag

and set its source attribute to a URL in a different domain.

ZHARTOR T XHR (H KR E R EUAAN AR i 55 s LR . 102 — AR EOR, MARE
Pt — LA, AR JavaScript GBI T MEIIASREE, 5 ERIEE PEBCEDY N8 AN [FE

URL.

var scriptElement = document.createElement('script');
scriptElement.src = 'http://any-domain.com/javascript/lib.js';

document.getElementsByTagName r(‘head")[0].appendChild(scriptElement);

But dynamic script tag insertion offers much less control than XHR. You can't send headers with the request.
Parameters can only be passed using GET, not POST. You can't set timeouts or retry the request; in fact, you
won't necessarily know if it fails. You must wait for all of the data to be returned before you can access any of it.

You don't have access to the response headers or to the entire response as a string.

{ERBNEMAYRE AL XHR ML 3B AP AR AN BRI IS SR AIE S Bk . S8 REIE . GET
JiikALs, ANEBEM POST. {RANRERCEIE RAGEN B, SLhr b, IRARZEAIEER TR . /R0
A B A R IR R S A AT AT R EATT . ARANBEDT (W A SR Sk B 507 1) 74 3 A 1 2w 1
Lo

This last point is especially important. Because the response is being used as the source for a script tag, it must
be executable JavaScript. You cannot use bare XML, or even bare JSON; any data, regardless of the format, must

be enclosed in a callback function.

e — AR . DU BARSCH A BIASRZE Y6, & 22 FTHRAT Y JavaScript. PRANBERE
XML, BGE#R JSON, EMEd, Tiettatga, WIE— ol s g k.

var scriptElement = document.createElement('script');
scriptElement.src = 'http://any-domain.com/javascript/lib.js';

document.getElementsByTagName r(‘head")[0].appendChild(scriptElement);

function jsonCallback(jsonString) {
var data = ('(" + jsonString +')");

// Process the data here...

-

In this example, the lib.js file would enclose the data in the jsonCallback function:

TEXAM 571, libjs ST R A jsonCallback B85 20 2504 :

jsonCallback({ "status": 1, "colors": ["#{ff", "#000", "#ff0000"] });

Despite these limitations, this technique can be extremely fast. The response is executed as JavaScript; it is not
treated as a string that must be further processed. Because of this, it has the potential to be the fastest way of
getting data and parsing it into something you can access on the client side. We compare the performance of

dynamic script tag insertion with the performance of XHR in the section on JSON, later in this chapter.

BRG], BEORRARE R How Y 25 ROZ 24T JavaScript, AN 747 H1 L UHGE —
DA IERDY I, ERRER R i ESRPOTF T R B i SATHAL 7SS IA SRS R AN
XHR [IPERE, FEA A M JSON —Fid,

Beware of using this technique to request data from a server you don't directly control. JavaScript has no
concept of permission or access control, so any code that you incorporate into your page using dynamic script tag
insertion will have complete control over the page. This includes the ability to modify any content, redirect users
to another site, or even track their actions on this page and send the data back to a third party. Use extreme caution

when pulling in code from an external source.

TN CAERTBE AR M ARANBE B BRI 554 _EIE R EHE . JavaScript A B R BT] H ML
P AR ¥ ST TR _EAE AR A P 3 A A bR 647 A\ B4 CRE BT LS8 S P 0T AR B R T s 1
HUE [5w, BURERANA TR TR BRI R AR 4 5 =7 o AE AN RIS I 55163k

AI%M'/J\)IL\O

Multipart XHR %4> XHR

The newest of the techniques mentioned here, multipart XHR (MXHR) allows you to pass multiple resources
from the server side to the client side using only one HTTP request. This is done by packaging up the resources
(whether they be CSS files, HTML fragments, JavaScript code, or base64 encoded images) on the server side and
sending them to the client as a long string of characters, separated by some agreed-upon string. The JavaScript
code processes this long string and parses each resource according to its mime-type and any other "header" passed

with it.

KRR, 85 XHR (MXHR) AVFR H A —A HTTP 18 sk i vT LA IR 5% #5 B i 22 A4
PR TR (TR CSS SCff, HTML J7 B¢, JavaScript fURY, B base64 Fufid iy) TR —
A EHREE SRR OB R AP R, MRS 38 0i RIE B% /it . JavaScript RIS IR 247 82, A4 1Y
IRAASR TN FA A B T H A4S WU

Let's follow this process from start to finish. First, a request is made to the server for several image resources:

IEEATMCR B BB TR . HoE, ROE—MER R RS a = BUL B &R 5

var req = new XMLHttpRequest();
req.open('GET', 'rollup_images.php', true);
req.onreadystatechange = function() {
if (req.readyState =—4) {
splitlmages(req.responseText);
}
s

req.send(null);

This is a very simple request. You are asking for data from rollup_images.php, and once you receive it, you

send it to the function splitimages.

KoM EE R R AIE K /R rollup_images.php ZEREHE, — BARWENRISE R, Bk ec s s

splitimages b,

Next, on the server, the images are read and converted into strings:

N RS AR R R e TR O A A

// Read the images and convert them into base64 encoded strings.
$images = array('kitten.jpg', 'sunset.jpg', 'baby.jpg");
foreach ($images as $image) {
$image fh = fopen($image, 'r');
$image data = fread($image fh, filesize($image));
fclose($image fh);
$payloads[] = base64 encode($image data);
yORETE: BESCRR, WESER)
H
// Roll up those strings into one long string and output it.

$newline = chr(1); / This character won't appear naturally in any base64 string.

echo implode($newline, $payloads);

This piece of PHP code reads three images and converts them into long strings of base64 characters. They are

concatenated using a single character, Unicode character 1, and output back to the client.

X PHP AR BEEE =AN B, G e 1840 i base6d FAF R o e AT 12 1A —AME L2 4%, UNICODE

(1, EEHGEK, SRJEIRAI% % .
Once on the client side, the data is processed by the splitlmages function:
SRJE IR o, AR T splitimage pRECAE

function splitlmages(imageString) {
var imageData = imageString.split("\u0001");
var imageElement;
for (var 1 =0, len = imageData.length; i < len; i++) {
imageElement = document.createElement('img');
imageElement.src = 'data:image/jpeg;base64,' + imageData[i];

document.getElementByld('container').appendChild(imageElement);

This function takes the concatenated string and splits it up again into three pieces. Each piece is then used to
create an image element, and that image element is inserted into the page. The image is not converted from a
base64 string back to binary data; instead it is passed to the image element using a data: URL and the image/jpeg

mime-type.

IR B PERE T U 275 £ o i oh =B BT —MEBIcR, RAEHEBoREATEm . &
BA e base6d Hefupl — ik, TR H data:URL 48 5€ image/jpeg BEAAKAL,

The end result is that three images have been passed to the browser as a single HTTP request. This could be
done with 20 images or 100; the response would be larger, but it would still take only one HTTP request. It can
also be expanded to other types of resources. JavaScript files, CSS files, HTML fragments, and images of many
types can all be combined into one response. Any data type that can be handled as a string by JavaScript can be
sent. Here are functions that will take strings for JavaScript code, CSS styles, and images and convert them into

resources the browser can use:

IRAEE R TE—IR HTTP G R m R BEasAE N 7 =5k & . i rT RUE A 20 5KEL 100 5K, w0 AR S04
R, HWHEE K HTTP iEK. BT LAY 2 HARSE Y 85 JavaScript SCfF, CSS 30fF, HTML
B VYRR T HT LA R — IR AR AT B AT 1 D — A JavaScript ARBE K A5 HR AR
o TR B T4 JavaScript {GRS . CSS #E2U MNP 5 30 W 48 al A AR I -

function handlelmageData(data, mimeType) {
var img = document.createElement('img');
img.src = 'data:' + mimeType + ';base64,' + data;
return img;

§

function handleCss(data) {
var style = document.createElement('style');
style.type = 'text/css";

var node = document.createTextNode(data);

style.appendChild(node);

document.getElementsByTagName r(‘head')[0].appendChild(style);
§
function handleJavaScript(data) {

(data);

As MXHR responses grow larger, it becomes necessary to process each resource as it is received, rather than

waiting for the entire response. This can be done by listening for readyState 3:

1T MXHR Wi R AR SOBCRER, A7 ZEAERR S G B IR ST ZIUAEBE, T AN 58 o 2 I o AR ST M e

. XA LU AW readyState 3 SETR:

var req = new XMLHttpRequest();
var getLatestPacketInterval, lastLength = 0;
req.open('GET", 'rollup images.php', true);
req.onreadystatechange = readyStateHandler;
req.send(null);
function readyStateHandler {
if (req.readyState === 3 && getLatestPacketInterval === null) {
// Start polling.
getLatestPacketInterval = window.setInterval(function() {
getLatestPacket();
;> 15);
H
if (req.readyState =—=4) {
// Stop polling.
clearInterval(getLatestPacketInterval);
/I Get the last packet.

getLatestPacket();

§

function getLatestPacket() {
var length = req.responseText.length;
var packet = req.responseText.substring(lastLength, length);
processPacket(packet);

lastLength = length;

-

Once readyState 3 fires for the first time, a timer is started. Every 15 milliseconds, the response is checked for
new data. Each piece of data is then collected until a delimiter character is found, and then everything is processed

as a complete resource.

* readyState 3 55— AN, JAB) T NER S BERE 15 ARG E — O MRS RO R . B
BB SRR B RIA LN 0BT, A DI e BRI B AL B

The code required to use MXHR in a robust manner is complex but worth further study. The complete library

can be easily be found online at http://techfoolery.com/mxhr/.

LA R A MXHR RS IR B 2MEER P05, SERIET S L

http://techfoolery.com/mxhr/ .

There are some downsides to using this technique, the biggest being that none of the fetched resources are
cached in the browser. If you fetch a particular CSS file using MXHR and then load it normally on the next page,
it will not be in the cache. This is because the rolled-up resources are transmitted as a long string and then split up
by the JavaScript code. Since there is no way to programmatically inject a file into the browser's cache, none of

the resources fetched in this way will make it there.

AR ERARAT — £k i, Herp R R U2 BT VR SRAT IR BE IR AN BE RN ST #3221 W ERARAE A MXHR
AREC—AMRFE N CSS ST ETE F — /NI FIE W INEE, EAEEAT . POV IR/ — P RY
P ARRIR, AR5 JavaScript ARG 3] BT BCA IMEIRE R ST S s 247, BT ARy
TEARE) G AR TCVE A E A L

Another downside is that older versions of Internet Explorer don't support readyState 3 or data: URLs.

Internet Explorer 8 does support both of them, but workarounds must still be used for Internet Explorer 6 and 7.

Ty A S ERARR Internet Explorer ANSZ#F readyState 3 5% data: URL. Internet Explorer 8 P52

¥r, 1B7E Internet Explorer 6 A1 7 H A AL IH o

Despite these downsides, there are still situations in which MXHR significantly improves overall page

performance:

RUE A IXEe (B3RS MXHR 588 B 2542 o T B4 T PR gE

* Pages that contain a lot of resources that aren't used elsewhere on the site (and thus don't need to be cached),

especially images

SRR HAbOT NS BIN B OTUATREE |, JTHZE T

« Sites that already use a unique rolled-up JavaScript or CSS file on each page to reduce HTTP requests; because

it is unique to each page, it's never read from cache unless that particular page is reloaded
q pag p pag

WA 35t Ay RN TUIE A T A — 8 4T B 11 JavaScript 5% CSS SCEBAL /> HTTP ik, KN e T4 1
TR UL, FTUAATRE NG S, BRIEEHE R E LI

Because HTTP requests are one of the most extreme bottlenecks in Ajax, reducing the number needed has a
large effect on overall page performance. This is especially true when you are able to convert 100 image requests
into a single multipart XHR request. Ad hoc testing with large numbers of images across modern browsers has
shown this technique to be 4 to 10 times faster than making individual requests. Run these tests for yourself at

http://techfoolery.com/mxhr/.

T HTTP iE K& Ajax Pmtiom s —, bR E BB TTm P RE AR .. LR
P44 100 BT IE SR AL S —> MXHR 15K . Ad hoe 7EIRARHI B0 2% FI T REE v, HERE R
AR E R T 4 2] 10 5. fReTBLE AIs172MR: hitp:/techfoolery.com/mxhr/

Sending Data KiX¥E

There are times when you don't care about retrieving data, and instead only want to send it to the server. You
could be sending off nonpersonal information about a user to be analyzed later, or you could capture all script
errors that occur and send the details about them to the server for logging and alerting. When data only needs to be

sent to the server, there are two techniques that are widely used: XHR and beacons.

BRSO YE, 1RSSR RIS IS 68 IRATLLEEA PR A 5 B Ll H G0, 50
FHHIR T A A R IR 5 A AT R IR IR 4 AT IC AR R . S8 AR RIES RSN, A P
J 2 SRR : XHR fAT 5.

XMLHttpRequest

Though primarily used for requesting data from the server, XHR can also be used to send data back. Data can
be sent back as GET or POST, as well as in any number of HTTP headers. This gives you an enormous amount of
flexibility. XHR is especially useful when the amount of data you are sending back exceeds the maximum URL

length in a browser. In that situation, you can send the data back as a POST:

HAR XHR EZ T MRS S IRECEAR E R T LU R BedE A [m] o Bl v LUR] GET 81 POST Jy 3% [,
PARAERHCE Y HTTP {5 B3k o IXBIRIR R RIGTE . R) IR 5545 A [0 R B s B o 28 1) s K URL
KR XHR Rl A o XML, ARAT LA POST J7 3 [al 4t -

var url = '/data.php';
var params = [
'id=934875",
Timit=20"
I;
var req = new XMLHttpRequest();
req.onerror = function() {

/! Error.

¥

req.onreadystatechange = function() {
if (req.readyState =—4) {

// Success.

§
s
req.open('POST', url, true);
req.setRequestHeader('Content-Type', 'application/x-www-form-urlencoded');
req.setRequestHeader('Content-Length', params.length);

req.send(params.join('&"));

As you can see in this example, we do nothing if the post fails. This is usually fine when XHR is used to
capture broad user statistics, but if it's crucial that the data makes it to the server, you can add code to retry on

failure:

IERRTEIR A7 B 2, AR T AT AR A 3T XHR 38 F 7 govt (s B I
PMOEHEEAT AL (B, R ARIE B IR S4 e 2O E I HE, URAT LI N ACREAE SR MU B

function xhrPost(url, params, callback) {
var req = new XMLHttpRequest();
req.onerror = function() {
setTimeout(function() {
xhrPost(url, params, callback);
}, 1000);
s
req.onreadystatechange = function() {
if (req.readyState == 4) {
if (callback && typeof callback === "function') {
callback();
}
}
s
req.open('POST', url, true);

req.setRequestHeader('Content-Type', 'application/x-www-form-urlencoded");

req.setRequestHeader('Content-Length', params.length);

req.send(params.join('&"));

-

When using XHR to send data back to the server, it is faster to use GET. This is because, for small amounts of
data, a GET request is sent to the server in a single packet. A POST, on the other hand, is sent in a minimum of
two packets, one for the headers and another for the POST body. A POST is better suited to sending large
amounts of data to the server, both because the extra packet won't matter as much and because of Internet

Explorer's URL length limit, which makes long GET requests impossible.

8] XHR R EHE K 0l 5545, & HEAER] GET Btk IR DX BB S, 10 5% ds ks —4>
GET 1R E & — M Edit. »—J7m, —4 POST B/ REWMEHEN, — M TEEL. 5—
AT POST f&. POST M & T 1A Mk s54% A K EHIE, HIPUYEAROHIMEEOEE, XN
Internet Explorer f¥] URL R, © AW REAE AL KK GET iE3K.

Beacons I 1R

This technique is very similar to dynamic script tag insertion. JavaScript is used to create a new Image object,
with the sre set to the URL of a script on your server. This URL contains the data we want to send back in the

GET format of key-value pairs. Note that no img element has to be created or inserted into the DOM.

EAR 53N S ANREAE A JEE F3L. JavaSeript T @18 — 811 Image M5, 4 sre WE MRS L
— A SR URL. It URL A5 AT Sl GET #% 20 A% [l (o 500 « 1R A B3 img o %
A ENTHEAZ] DOM Hi.,

var url = '/status_tracker.php';
var params = |

'step=2',

'time=1248027314'
I;

(new Image()).src = url +'?' + params.join('&');

The server takes this data and stores it; it doesn't have to send anything back to the client, since the image isn't
actually displayed. This is the most efficient way to send information back to the server. There is very little

overhead, and server-side errors don't affect the client side at all.

M 55 s B UL B R A7 T ok, AL [0 2 P SiR [l 4, DB A SRR B U oR » IX R A5 Bk (Bl
W 5% s BT RO 5. HOTBARAN, 10 BARAT R 55 ds i B R AAN S R R i o

The simplicity of image beacons also means that you are restricted in what you can do. You can't send POST
data, so you are limited to a fairly small number of characters before you reach the maximum allowed URL length.
You can receive data back, but in very limited ways. It's possible to listen for the Image object's load event,
which will tell you if the server successfully received the data. You can also check the width and height of the
image that the server returned (if an image was returned) and use those numbers to inform you about the server's

state. For instance, a width of 1 could be "success" and 2 could be "try again."

a7 B P L BT A R R IR BT REMUT 32 2 BR . IRANRE AL POST %l BT LAARAE URL A EERRBIE—>
N PR ECE o AR DU AR R AT BRI EOR P EE « 7TRARYT Image XS 4LH) load F4F, BT LA
T YRR AR 5545 3 J2 75 BRI 1 e o I T LUAS, £ i 55 i ke [1) F o A s 1 CAn SRR (0] 1 — 5K 1B)
H R AN R IR S5 s IR A B, SEREN 1 SRz, 2 R ik,

If you don't need to return data in your response, you should send a response code of 204 No Content and no

message body. This will prevent the client from waiting for a message body that will never come:

R RANT ZEA e WY 3R [BIE A, I8 APRRY. 24535 — 1> 204 No Content Mg fACAS, B BUIEC. BHFH
B2 i AR AR AR AR I AN 2 BRI B A

var url = '/status_tracker.php';
var params = [
'step=2',
'time=1248027314'
I;
var beacon =new Image();

e V(?V M . 1 n.
. ? . ;
beacon.src = url + '?' + params.join('&')

beacon.onload = function() {
if (this.width == 1) {
// Success.
H
else if (this.width == 2) {
// Failure; create another beacon and try again.
H
s
beacon.onerror = function() {

// Error; wait a bit, then create another beacon and try again.

55

Beacons are the fastest and most efficient way to send data back to the server. The server doesn't have to send
back any response body at all, so you don't have to worry about downloading data to the client. The only
downside is that it you are limited in the type of responses you can receive. If you need to pass large amounts of
data back to the client, use XHR. If you only care about sending data to the server (with possibly a very simple

response), use image beacons.

KT 2 7 B 55 5 (B8 i foe PRAT B 7 R ik 0 R 35 s ARAANTR R [BEAT WA R IE ST, B AR AN 6 4HL
v R o e R R BB A B R AR S RN o AR R B) R i R PR A, A
M XHR o QERAR A SO HUE SO B 55 dsim (PTRER 2Bl =D AR A EEAT Ar

Data Formats ﬁlﬁ*ﬁiﬂ

When considering data transmission techniques, you must take into account several factors: feature set,
compatibility, performance, and direction (to or from the server). When considering data formats, the only scale

you need for comparison is speed.

FE2%5 S HAR R AMBORIN, IR [EIXEE N B DhRESE, MeEth, PERE, AT 1R R4 o545 B Mk
Fastf) o FEH AR, ME R 2 P R Al R

There isn't one data format that will always be better than the others. Depending on what data is being
transferred and its intended use on the page, one might be faster to download, while another might be faster to
parse. In this section, we create a widget for searching among users and implement it using each of the four major
categories of data formats. This will require us to format a list of users on the server, pass it back to the browser,
parse that list into a native JavaScript data structure, and search it for a given string. Each of the data formats will
be compared based on the file size of the list, the speed of parsing it, and the ease with which it's formed on the

SCrver.

BT A R K U IR R L Al S B 4 AR s A A8« 1 T 0T B A H i, 2R AT g
BEEPR, T — R AT REART SEbR . FEARTY R, JATENRE T AN E U NB A R A S RO A A
TR U . R ERBATFE R 5 gt AL — DM P PIRE, iR Bl s, F5 FIR M
JavaScript H4E#4, FFERFHER P H o BMER KU LLES RIS, T, IR S5 &
ERE eI SR .

XML

When Ajax first became popular, XML was the data format of choice. It had many things going for it: extreme
interoperability (with excellent support on both the server side and the client side), strict formatting, and easy
validation. JSON hadn't been formalized yet as an interchange format, and almost every language used on servers

had a library available for working with XML.

4 Ajax JHRZRUATE R EIERE 1 XML Hifitg X IR Z FREMSE CMm: Pomr LEE ks
dnim NI om AR RAF SR, UM, BT RAE. IR JSON IEw A EAAE hAc s, LT
FITAT PR R 554 i V5 AT BRAF XML FR9

Here is an example of our list of users encoded as XML.:

XHLZ) XML i 7 51 R BB 5

<?xml version="1.0" encoding="UTF-8'?>
<users total="4">

<user id="1">

<username>alice</username>
<realname>Alice Smith</realname>
<email>alice@alicesmith.com</email>

</user>

<user id="2">
<username>bob</username>
<realname>Bob Jones</realname>
<email>bob@bobjones.com</email>

</user>

<user id="3">
<username>carol</username>
<realname>Carol Williams</realname>
<email>carol(@carolwilliams.com</email>

</user>

<user id="4">
<username>dave</username>
<realname>Dave Johnson</realname>
<email>dave@davejohnson.com</email>

</user>

</users>

Compared to other formats, XML is extremely verbose. Each discrete piece of data requires a lot of structure,
and the ratio of data to structure is extremely low. XML also has a slightly ambiguous syntax. When encoding a
data structure into XML, do you make object parameters into attributes of the object element or independent child
elements? Do you make long, descriptive tag names, or short ones that are efficient but indecipherable? Parsing
this syntax is equally ambiguous, and you must know the layout of an XML response ahead of time to be able to

make sense of it.

HRAR AL, XML BT, @ AU AR fr W 2R 254, B LA il 1 B R A
1M H XML 15 5A S] . S8R S Mm% XML 25, eSS 808 e g o= stk

FERAEARSL A F 7ok T 2 AR AL (TS iy 44 B A /N B AR AR A 48 7 2 TRIE AT TR AR 23R, R 20
JERNIE XML W AR SO J . ARJE A RESRIE 22 B0 L.

In general, parsing XML requires a great deal of effort on the part of the JavaScript programmer. Aside from
knowing the particulars of the structure ahead of time, you must also know exactly how to pull apart that structure
and painstakingly reassemble it into a JavaScript object. This is far from an easy or automatic process, unlike the

other three data formats.

—RUFOLR, AT XML 25 JavaScript B AR AR 0AE . bR T EIRATAIIE PR A5 24k, AR
A ZBUR DI ST A T R T I A R R R R DR B TSN JavaSeript M5 . R E 5 H AR AT
Jl ANECHA = R i IR

Here is an example of how to parse this particular XML response into an object:

TR QTR R E XML AR CSCAEAT 20 S5

function parseXML(responseXML) {
var users = [];
var userNodes = responseXML.getElementsByTagName r(‘users');
var node, usernameNodes, usernameNode, username,
realnameNodes, realnameNode, realname,
emailNodes, emailNode, email;
for (var 1 =0, len = userNodes.length; 1 < len; i++) {
node = userNodes[i];
username = realname = email = ";
usernameNodes = node.getElementsByTagName r(‘username');
if (usernameNodes && usernameNodes[0]) {
usernameNode = usernameNodes[0];
username = (usernameNodes.firstChild) ?
usernameNodes. firstChild.nodeValue : ";

}

realnameNodes = node.getElementsByTagName r(‘realname');

if (realnameNodes && realnameNodes[0]) {
realnameNode = realnameNodes[0];
realname = (realnameNodes.firstChild) ?
realnameNodes.firstChild.nodeValue : ";
H
emailNodes = node.getElementsByTagName r('email');
if (emailNodes && emailNodes[0]) {
emailNode = emailNodes[0];
email = (emailNodes.firstChild) ?
emailNodes.firstChild.nodeValue : ";
§
users[i] = {
id: node.getAttribute('id'),
username: username,
realname: realname,
email: email
s
§

return users;

As you can see, it requires checking each tag to ensure that it exists before reading its value. It is heavily

dependent on the structure of the XML.

IEWPRETE 20, FERREZ AT, ERERET MR URIEE AL . RERKRERE BRI XML 1145
o

A more efficient approach would be to encode each of the values as an attribute of the <user> tag. This results
in a smaller file size for the same amount of data. Here is an example of the user list with the values encoded as

attributes:

— AR SRR R M E A A <user>HRZE I JE I o s AR M0 SO ROT 2R Ao IR
MPPIEE, RERCE RS R

<?xml version="1.0" encoding="UTF-8'?>
<users total="4">
<user id="1-1d001" username="alice" realname="Alice Smith" email="alice@alicesmith.com" />
<user id="2-1d001" username="bob" realname="Bob Jones" email="bob@bobjones.com" />
<user 1d="3-1d001" username="carol" realname="Carol Williams" email="carol@carolwilliams.com" />
<user id="4-1d001" username="dave" realname="Dave Johnson" email="dave@davejohnson.com" />

</users>

Parsing this simplified XML response is significantly easier:

AT L ART AR XML W AR S B R 513 %

function parseXML(responseXML) {
var users = [];
var userNodes = responseXML.getElementsByTagName r('users');
for (var 1 =0, len = userNodes.length; 1 < len; i++) {
users[i] = {
id: userNodes[1i].getAttribute('id'),
username: userNodes[1].getAttribute('username'),
realname: userNodes[i].getAttribute('realname'),
email: userNodes|[i].getAttribute('email’)
s
§

return users;

XPath

Though it is beyond the scope of this chapter, XPath can be much faster than getElementsByTagName when
parsing an XML document. The caveat is that it is not universally supported, so you must also write fallback code
using the older style of DOM traversal. At this time, DOM Level 3 XPath has been implemented by Firefox,

Safari, Chrome, and Opera. Internet Explorer 8 has a similar but slightly less advanced interface.

WA T ATEANAERYEH, {8 XPath ZEfHT XML SCRSE HE getElementsByTagName th15% . %
FEREEE, EHRBRNIZICRE, BFrURL S 2 X&) DOM [77 490 5 & - AGS . IR, DOM
e 3 F) XPath B £ i Y8520 Firefox, Safari, Chrome, F1 Opera. Internet Explorer 8 —/~3%

AR E RS SRR T

Response sizes and parse times W SR SCK/NATAEAT A TE]

Let's take a look at the performance numbers for XML in the following table.

EHATRE —F FRAE XML PEReEE:

Format Size Downloadtime Parsetime Total load time
Verbose XML 58290bytes 9994 ms 3431 ms 1342.5ms
Simple XML 437,960 bytes 475.1ms 3.1 ms 558.2 ms

As you can see, using favoring attributes over child tags leads to a smaller file size and a significantly faster
parse time. This is mostly due to the fact that you don't have to walk the DOM on the XML structure as much, and

can instead simply read attributes.

IEWRETE 20, S TARZEARLL, (ERTB PRI SO RTS8/, 5 ml 2 AT I TRl SE b . LS AR KRR
[T ERETIXFEESE: (RANTRELE XML 4544 b] DOM B4 2 7k, i 2R 6 b BUB M.

Should you consider using XML? Given its prevalence in public APIs, you often have no choice. If the data is
only available in XML, you roll up your sleeves and write code to parse it. But if there is any other format
available, prefer that instead. The performance numbers you see here for verbose XML are extremely slow
compared to more advanced techniques. For browsers that support it, XPath would improve the parse time, but at
the cost of writing and maintaining three separate code paths (one for browsers that support DOM Level 3 XPath,
one for Internet Explorer 8, and one for all other browsers). The simple XML format compares more favora

but is still an order of magnitude slower than the fastest format. XML has no place in high-performance Aja

RN XML? 17 & APLANILRATAE, R nlLitse. WREdE KA XML #3UrT A,
TS 2R A S AR AT B o (ER an RAT Hb s T, 84 7 U E o IRTEIX B B bk XML
(K BE RO 5 B S B AL, BAFRNE 1o R3S SR TS, XPath EGEMENT IR 1], (BN 2
G5 4 = AMMCEE 3 CSCRE DOM 4451 3 1) XPath fRI3I %48 5 —, A Internet Explorer 8 5 —*,
AR BEAEE —A4) o 6 XML AR AR, (AR e e s UE 18— N RS . R BE Ajax
F¥E XML AL

JSON

Formalized and popularized by Douglas Crockford, JSON is a lightweight and easy-to-parse data format

written using JavaScript object and array literal syntax. Here is an example of the user list written in JSON:

11t Douglas Crockford [B 5HE™, JSON & — MR EYHZ T T EI R, ©1%MH JavaScript
X EREN F LTS . S EHH JSON HE5 K H 45

"id":1, "username":"alice", "realname": "Alice Smith", "email":"alice@alicesmith.com"}

{"id":2, "username":"bob", "realname": "Bob Jones", "email":"bob@bobjones.com"},

"id":3, "username":"carol", "realname": "Carol Williams","email":"carol@carolwilliams.com"},

{"id":4, "username":"dave", "realname": "Dave Johnson", "email":"dave@davejohnson.com"}

The users are represented as objects, and the list of users is an array, just as any other array or object would be
written out in JavaScript. This means that when evaled or wrapped in a callback function, JSON data is executable

JavaScript code. Parsing a string of JSON in JavaScript is as easy as using ():

PRI G, APAIRBCH— 4, 5 JavaScript F HAMEA BN G S5 IXERE
R e AREE IR RS, JSON £ nT#k 4 BE 8512 1T 1 JavaScript A4 . 7£ JavaScript Hfi##T JSON
CINGE SR OAEIOR

function parseJSON(responseText) {

return ('(" + responseText +')");

Just as with XML, it is possible to distill this format into a simpler version. In this case, we can replace the

attribute names with shortened (though less readable) versions:

IEG XML JREE, G AT AR R — MR RS . XA O, RATANG 2 P gl OV At Ae
)

{"1": 1, "u": "alice", "r": "Alice Smith", "e": "alice@alicesmith.com" },
{"1": 2, "u": "bob", "r'": "Bob Jones", "e": "bob@bobjones.com" },

{"1": 3, "u": "carol", "r": "Carol Williams", "e": "carol@carolwilliams.com" },

{"1": 4, "u": "dave", "r": "Dave Johnson", "e": "dave(@davejohnson.com" }

This gives us the same data with less structure and fewer bytes overall to transmit to the browser. We can even
take it a step further and remove the attribute names completely. This format is even less readable than the other

two and is much more brittle, but the file size is much smaller: almost half the size of the verbose JSON format.

RS AR TR B30 LA SE A G5 AR SE /N RO BB gt B s . BEHE—2, AT T E e & mii 4 .
B AR A AL, A AT e 22, (HRERR, S RSHARE /D KA R A5 ISON 4% 3
#ii_/_zo

[1, "alice", "Alice Smith", "alice@alicesmith.com"],
[2, "bob", "Bob Jones", "bob@bobjones.com"],
[3, "carol", "Carol Williams", "carol@carolwilliams.com"],

[4, "dave", "Dave Johnson", "dave@davejohnson.com"]

Successful parsing requires that the order of the data must be maintained. That being said, it is trivial to convert

this format into one that maintains the same attribute names as the first JSON format:

MR FE AR AR TR B . LR UL, EE AT RS U I I OR RS > JSON R —FE R
PEA:

function parseJSON(responseText) {
var users = [];
var usersArray = ('(' + responseText +')");
for (var i =0, len = usersArray.length; i < len; i++) {
users[i] = {
id: usersArray[i][0],
username: usersArray[i][1],
realname: usersArray|[i][2],
email: usersArray|[i][3]
s
§

return users;

In this example, we use () to convert the string into a native JavaScript array. That array of arrays is then
converted into an array of objects. Essentially, you are trading a smaller file size and faster () time for a more
complicated parse function. The following table lists the performance numbers for the three JSON formats,

transferred using XHR.

TEIRANE T, FATE O 277 58 83y — N2l JavaScript 204 . ARG R S8 — Nt 5 504
AJE B, AR 24 AR R AR T RN SO R ST FRE OB [a] . R 3R 2 HIX =k JSON #%
A Re AR, DL XHR 4.

Format Size Downloadtime Parsetime Total load time

Verbose JSON 487,895 bytes 5277 ms 26.7 ms 554.4 ms
Simple JSON ~ 392,895bytes 498.7 ms 29.0ms 527.7 ms
Array JSON 292,895 bytes 3054 ms 18.6 ms 324.0ms

JSON formed using arrays wins every category, with the smallest file size, the fastest average download time,
and the fastest average parse time. Despite the fact that the parse function has to iterate through all 5,000 entries in

the list, it is still more than 30% faster to parse.

A ISON ZERF— 3R, & SO RSB/, T adse e, ~TIfpT i al e . RV AT e 25
ANGANE AN F T 5000 NG, BEERE T 30%.

JSON-P

The fact that JSON can be executed natively has several important performance implications. When XHR is
used, JSON data is returned as a string. This string is then evaluated using () to convert it into a native object.
However, when dynamic script tag insertion is used, JSON data is treated as just another JavaScript file and
executed as native code. In order to accomplish this, the data must be wrapped in a callback function. This is

known as "JSON with padding," or JSON-P. Here is our user list formatted as JSON-P:

H5 | JSON g A HIA T LA EE M RE M. 446 XHR I JSON Hdfs 14— A F 45 H iR] .
BEA R ORI — DA 5. AR, BB S AR AR, JSON Edli gt 73—
JavaScript SCAFFFAE A ASHAG AT o AMENIX — =, Bdl DO e R R s B . X2 FTiE I “ISON
H7E7 8 JSON-P. " 2 AT JSON-P # :{H S HIF 7 511%k::

parseJSON([

"id":1, "username":"alice", "realname":" Alice Smith", "email":"alice@alicesmith.com"},

{"id":2, "username":"bob", "realname":"Bob Jones", "email":"bob@bobjones.com"},

"id":3, "username":"carol", "realname":"Carol Williams", "email":"carol@carolwilliams.com"},

{"id":4, "username":"dave", "realname":"Dave Johnson", "email":"dave@davejohnson.com"}

D;

JSON-P adds a small amount to the file size with the callback wrapper, but such an increase is insignificant
compared to the improved parse times. Since the data is treated as native JavaScript, it is parsed at native

JavaScript speeds. Here are the same three JSON formats transmitted as JSON-P.

JSON-P [AA [F1 3 6,2 () SR DRI RS B85 n T SO R, (B LA AT 4R e I O3 AR PO s 3 AN 218 . B
THAEAE Jg AR JavaScript A0HE, T FIAENTE {5 A JavaScript — £ k. T2 JSON-P 1£4 —Fi JSON
HHE R]

Format Size Download time Parsetime Totalload time
Verbose JSON-P - 487,913 bytes 598.2ms 0.0ms 598.2 ms
Simple JSON-P - 392913 bytes 454.0ms 3 ms 4571 ms
Artay J50N-P 2929 2bytes 316.0ms 34 ms 3194 ms

File sizes and download times are almost identical to the XHR tests, but parse times are almost 10 times faster.
The parse time for verbose JSON-P is zero, since no parsing is needed; it is already in a native format. The same
is true for simple JSON-P and array JSON-P, but each had to be iterated through to convert it to the format that

verbose JSON-P gives you naturally.

SCPFACAITT BIH 71 55 XHR WAL AR, TOARHTIN L THR T 10 fi5. 454E JSON-P RO 114 0,
B AR AR AT ABYT, & 2R AMIAE R T FLAT JSON-P LA ISON-P LA, FLEAFh 75 22
BRI JSON-P ETBEA TR0 AR

The fastest JSON format is JSON-P formed using arrays. Although this is only slightly faster than JSON
transmitted using XHR, that difference increases as the size of the list grows. If you are working on a project that

requires a list with 10,000 or 100,000 elements in it, favor JSON-P over JSON.

IR JSON #4202 A ZH i) JSON-P #% 3. EARIX H LU A XHR fY JSON B& R, (HR X% b
B HNZR T 3G TG an SRR AT A 10 H 75 22— 10'000 8% 100'000 4~ 517044 5 11 71126, 54 JISON-P
tt JSON 1R % .

There is one reason to avoid using JSON-P that has nothing to do with performance: since JSON-P must be
executable JavaScript, it can be called by anyone and included in any website using dynamic script tag insertion.

JSON, on the other hand, is not valid JavaScript until it is evaled, and can only be fetched as a string using :

Do not encode any sensitive data in JSON-P, because you cannot ensure that it will remain private, even with

random URLSs or cookies.

WA N EYERE IR I N 2258 %A JSON-P: [A 04 JSON-P AAZ52 AT AT I JavaScript, &1 M52
AR BB SR AEALAT 5 AT NI . A5 —NARZHE, JSON TEIZ4T Z R A2 A 2]
JavaScript, {{f] XHR I} FZ 4 9 P47 H 3R AN EER AT BUR K 5 4w A% 04 JSON-P, DA AR TG 32
CEGUSHREER, BELEHILY URL 5 cookie.

Should you use JSON? R 1ZAFFH JSON 15 ?

JSON has several advantages when compared to XML. It is a much smaller format, with less of the overall
response size being used as structure and more as data. This is especially true when the data contains arrays rather
than objects. JSON is extremely interoperable, with encoding and decoding libraries available for most server-side
languages. It is trivial to parse on the client side, allowing you to spend more time writing code to actually do
something with the data. And, most importantly for web developers, it is one of the best performing formats, both
because it is relatively small over the wire and because it can be parsed so quickly. JSON is a cornerstone of

high-performance Ajax, especially when used with dynamic script tag insertion.

5 XML AiLE JSON 72 IXMIEUME L, 7R R M NARSCH, gika B AR R E A, Bl A
HIEZ . ol e B B & e AR XS S . JSON 5K 2 HUlk 554 im 1 5 B4 A4 2 18]G A5 AR 4 .
BRARYE . EAER S AR TARANEIE, R AT LUK 5 2 SACH A I R ECE A AR AR B B o X9 50T
KRR EENE, CRRIEAHIEINZ —, BIRUONEEARSARR N, RO+ 20 Z k. JSON
A TERE Ajax FIZEA, Rl AL S S A RRZE A .

HTML

Often the data you are requesting will be turned into HTML for display on the page. Converting a large data
structure into simple HTML can be done relatively quickly in JavaScript, but it can be done much faster on the
server. One technique to consider is forming all of the HTML on the server and then passing it intact to the client;
the JavaScript can then simply drop it in place with innerHTML. Here is an example of the user list encoded as

HTML.:

T AR PTIE SR B BERE L HTML 3R [0 3 S8R 78 B0 F . JavaScript BERS L PRt — AN K ER 25440k
I B HTML, fEJE R4S 5e i FRE TAE S . — PR % [E L 7E IR &5 28 um A 38> HTML 2R 5 i sy
P, JavaScript FOZ T BN #C ARG TON innerHTML . T 42 F HTML 4w 7 51138 491 1

<ul class="users">

<li class="user" id="1-id002">

alice

Alice Smith

alice@alicesmith.com

<li class="user" id="2-id002">

bob

Bob Jones

bob@bobjones.com

<li class="user" id="3-id002">

carol

Carol Williams

carol@carolwilliams.com

<li class="user" id="4-id002">

dave

Dave Johnson

dave@davejohnson.com

The problem with this technique is that HTML is a verbose data format, more so even than XML. On top of the
data itself, you could have nested HTML tags, each with IDs, classes, and other attributes. It's possible to heve tha

HTML formatting take up more space than the actual data, though that can be mitigated by using as few tag

attributes as possible. Because of this, you should use this technique only when the client-side CPU is more

limited than bandwidth.

IR REAE T, HTML & — Mg s, b XML BEinii. 78R A S KssNE, aTa ik
1 HTML br%s, SR ID, 28, AR, HTML TR L sEpr8cs T E 2 18|, 8
R R E D AN B SR IE — . ERCAIRAN R, R R %7 50 CPU Ry 58 5E A2 BRI A
SRR,

On one extreme, you have a format that consists of the smallest amount of structure required to parse the data
on the client side, such as JSON. This format is extremely quick to download to the client machine; however, it
takes a lot of CPU time to convert this format into HTML to display on the page. A lot of string operations are

required, which are one of the slowest things you can do in JavaScript.

—MiomtE LR, PRAE RS B DB ER A, T EAER S AR AR, a0 JISON. X R
TEBIESPEER Y, ATEFEIRZ CPU W AIFE L HTML LU /R7E U b X EIR 2 757 sf ek,
7 B E 2 JavaScript S g I#EZ —.

On the other extreme, you have HTML created on the server. This format is much larger over the wire and

takes longer to download, but once it's downloaded, displaying it on the page requires a single operation:

e E DAL, ARG ds EEIE HTML. XAE e 2kt B0, MEIN S, H—HRE

56, R MR T LLE A BT L

document.getElementByld('data-container').innerHTML = req.responseText;

The following table shows the performance numbers for the user list encoded using HTML. Keep in mind the
main different between this format and all others: "parsing" in this case refers to the action of inserting the HTML

in the DOM. Also, HTML cannot be easily or quickly iterated through, unlike a native JavaScript array.

TRER T HTML $fid H - 20 vt e S . 5o mog 5 Hpth JLA R i = 5 <f@th
FEX AL R B2 8 HTML #i A\ DOM [K#4E . 4N, HTML ANEEf5 AL JavaScript 2040 A RE$2 5 ik
HU AT AR A

Format Size Downloadtime Parsetime Total load time
HTML 1,063 416 bytes 2737 ms 1214 ms 394.5ms

As you can see, HTML is significantly larger over the wire, and also takes a long time to parse. This is because
the single operation to insert the HTML into the DOM is deceptively simple; despite the fact that it is a single line
of code, it still takes a significant amount of time to load that much data into a page. These performance numbers
do deviate slightly from the others, in that the end result is not an array of data, but instead HTML elements

displayed on a page. Regardless, they still illustrate the fact that HTML, as a data format, is slow and bloated.

IEAR & 2R, HTML Ao & 0 S, W E K R . MR HTML 6 A %] DOM 1
RREERIR R, RET A AT, A5 TFZE m oOm SR 2 ik . 5 AR EL X S e
B SEA M 2, B AEIRAREIR A, TR BonE i R HTML o3 Biendr, &I &
A HTML [— st AR Edrs s, B im H g .

Custom Formatting H & S

The ideal data format is one that includes just enough structure to allow you to separate individual fields from

each other. You can easily make such a format by simply concatenating your data with a separator character:

AR EE A U S B S, (EURRENS 20t B> Bl ARRT LB S SC— ol 202) Bt 1
N R R B I AR K

Jacob;Michael;Joshua;Matthew; Andrew;Christopher;Joseph;Daniel;Nicholas;Ethan; William;Anthony;Ryan;Davi

d;Tyler;John

These separators essentially create an array of data, similar to a comma-separated list. Through the use of
different separators, you can create multidimensional arrays. Here is our user list encoded as a character-delimited

custom format:

RERRFTEEA O 7 MRS, RUT - ME S A RIAIR . WA FR 2R, 7RA
Q2 el IXHUE A SO 745 0 By sCRI S L 2R

l:alice:Alice Smith:alice@alicesmith.com;

2:bob:Bob Jones:bob@bobjones.com;

3:carol:Carol Williams:carol@carolwilliams.com;

4:dave:Dave Johnson:dave@davejohnson.com

This type of format is extremely terse and offers a very high data-to-structure ratio (significantly higher than
any other format, excluding plain text). Custom formats are quick to download over the wire, and they are fast and
easy to parse; you simply call split() on the string, using your separator as the argument. More complex custom
formats with multiple separators require loops to split all the data (but keep in mind that these loops are extremely
fast in JavaScript). split() is one of the fastest string operations, and can typically handle separator-delimited lists

of 10,000+ elements in a matter of milliseconds. Here is an example of how to parse the preceding format:

A AARR T, HHARRK AL ORESRAseA) |, R/ A BB B4R m . FOE O UM
W, G T, TR A A R splitOR 7 B AT o8 S Bte ARTRT . SRR B S X U 2 50
BT, TR A A B (ERIEICAE, 7 JavaScript U SEPEIAZAEH PR o split() 2 R
FREERAEL —, WH LIRS AR B AT 10000 TR <o FRAT 2 EI IR . TR B T4
fEd bR I

function parseCustomFormat(responseText) {
var users = [];
var usersEncoded = responseText.split(';');
var userArray;
for (var 1 =0, len = usersEncoded.length; i < len; i++) {
userArray = usersEncoded[1].split(":");
users[i] = {
id: userArray[0],
username: userArray[1],
realname: userArray[2],
email: userArray[3]
s
§

return users;

When creating you own custom format, one of the most important decisions is what to use as the separators.
Ideally, they should each be a single character, and they should not be found naturally in your data. Low-number
ASCII characters work well and are easy to represent in most server-side languages. For example, here is how you

would use ASCII characters in PHP:

LEVEIRI B E XU, S e R RR R . BN T, BN MR NS, mA
ANBEAFAE TR 2 o ASCIL FRF R HH AT 1 LA PR E R 2 U & v iE 5 HHRERS 1B TAE M B &
BBE. fla, TR e PHP TR {E A ASCII i

function build format custom(S$users) {
$row_delimiter = chr(1); //\u0001 in JavaScript.
$field delimiter = chr(2); // \u0002 in JavaScript.
Soutput = array();
foreach (Susers as $user) {
$fields = array($user['id'], Suser['username'], $user|'realname'], $user['email']);
Soutput[] = implode(S$field_delimiter, $fields);

}

return implode($row_delimiter, $output);

These control characters are represented in JavaScript using Unicode notation (e.g., \u0001). The split()
function can take either a string or a regular expression as an argument. If you expect to have empty fields in your
data, then use a string; if the delimiter is passed as a regular expression, split() in IE ignores the second delimiter

when two are right next to each other. The two argument types are equivalent in other browsers.

XL 7 JavaScript A H Unicode dxiF (40, \w0001) 7R split()k & n] LA 547 5 5l 1F
WIREANES . WRRABEF T AETEER, BAmAHEAS: RSB E —MENRIAR, IE
Hrr) split()4F Bkt AHAE P A 2 BR R R 30 AN BR T o IX PR S ECR AR A B Y 3 S5 .

// Regular expression delimiter.

var rows = req.responseText.split(/Au0001/);

// String delimiter (safer).

var rows = req.responseText.split("\u0001");

Here are the performance numbers for a character delimited custom format, using both XHR and dynamic

script tag insertion:

SRR 5 XK SR AR , 48P XER RIS A bR

Format Size Downloadtime Parsetime Total load time
Custom Format (¥HR) 222892 bytes 63.1ms 14.5ms 776 ms
Custom Format (script insertion) 222,912 bytes 66.3 ms 1.7 ms 78.0 ms

Either XHR or dynamic script tag insertion can be used with this format. Since the response is parsed as a
string in both cases, there is no real difference in performance. For very large datasets, it's hands down the fastest
format, beating out even natively executed JSON in parse speed and overall load time. This format makes it

feasible to send huge amounts of data to the client side in a very short amount of time.

XHR RSN BIANR T E N AT DU AR A e PR OL T B0 Mt 540 oh, FEIERE BT SER B
Z5te MTARE RIEES, CR R RS, F 2T DIFE T RN 20N 8] B AR LR AT 1
JSON. FHIEHE 3 1m%e /7 o Ak K B Hdls S AR IR A] .

Data Format Conclusions ¥3E#& B4

Favor lightweight formats in general; the best are JSON and a character-delimited custom format. If the data

set is large and parse time becomes an issue, use one of these two techniques:

PRI S A% SO, SR A /2 TSON R FAF 73 B 14 1 52 A% e dn SR AR AR AR KB g A I 1)
JRIR L, 8 AR P K P A 3

* JSON-P data, fetched using dynamic script tag insertion. This treats the data as executable JavaScript, not a
string, and allows for extremely fast parsing. This can be used across domains, but shouldn't be used with

sensitive data.

JSON-P %45, MIZhAMIASREER AGEIRA . AR ATIZAT K JavaScript AN P47, EHTHE
etk EREBSESIRAEH], (EANN I S U EE -

* A character-delimited custom format, fetched using either XHR or dynamic script tag insertion and parsed using

split(). This technique parses extremely large datasets slightly faster than the JSON-P technique, and generally has

a smaller file size.

TP BRI B S, AT XHR Bl SR A BORIRRG A splitOf . ILBOARFERT AR
REHEEE I EL JSON-P SRR R, 1y FUEH SRS

The following table and Figure 7-1 show all of the performance numbers again (in order from slowest to
fastest), so that you can compare each of the formats in one place. HTML is excluded, since it isn't directly

comparable to the other formats.

NRANE 71 FRRER TETAEREREEE RN BIPRIIUY) , ART AFE e PR R A A S
5. HIML AREHE, DUOYELHARK AR HELE.

Format Size Downloadtime Parsetime Total load time
Vetbose XML 582960 bytes 9994 ms 43 ms 13425ms
Verbose ISON-P 487913 bytes 5982 ms 0.0 ms 598.2 m
Simple XML 437 960 bytes 4751 ms 8. 1ms 558.2 ms
Verbose JSON 487 B95bytes 5277 ms 26.7 ms 554.4 ms
Simple 150N 392895 bytes 4987 ms 29.0ms 5077 ms
Simple JSON-P 192913 bytes 454.0ms 3ms 457.1 ms

Array J50N 292.895bytes 3054ms 186 ms 340ms

Array JSON-P 292 9M2bytes 316.0ms 3I4ms 3194 ms
Custom Format (script insertion) ~ 222.912bytes 66,3 ms 1.7 ms 78.0 ms

Custom Format (XHR) 122892 bytes 63 1ms 14.5ms 77.6ms

Verbose XML | F=———
Verbase JSON-E]
Simple XML (XHR) "1
Verbase JSON (XHR) n
Simple JSON (i) [—————q
Simple JSON-P [
Array JSON (XHR) [————""1
fmay J5ONP 1
Custom Format (insertion) |1
Custom Format (HR) |8
0 20 40 60 80 100 1200 1400 1,600
[2 Download time (ms) B8 Parse ime ms) |

Figure 7-1. A comparison of data format download and parse times
B 7-1 BB i 3 BRI A A (1 I 1]

Keep in mind that these numbers are from a single test run in a single browser. The results should be used as
general indicators of performance, not as hard numbers. You can run these tests yourself at

http://techfoolery.com/formats/.

TR IR HORAE — g BT — AR A o SR R T AR R RO RE SR bR, T AN

DIECSE o ARAT L s ATIREEMA, {7 T : http://techfoolery.com/formats/.
Ajax Performance Guidelines Ajax {48875

Once you have selected the most appropriate data transmission technique and data format, you can start to
consider other optimization techniques. These can be highly situational, so be sure that your application fits the

profile before considering them.

— BARERE T Bea G EUR A BOR MR 5, AT 467%5 A A OLAL BRI o SRR EAR S
FARTE DU, 7225 IS AT T H ZE DRI B TR 2 15 RE S 1 I 2o

Cache Data 7%

The fastest Ajax request is one that you don't have to make. There are two main ways of preventing an
J q y y p g

unnecessary request:
BRI Ajax TR IR S AW EZ VAR G — AL BRI K
* On the server side, set HTTP headers that ensure your response will be cached in the browser.
TER GG ds i, BOE HTTP 3k, B ORIR BRSO L2 A7 780 s
* On the client side, store fetched data locally so that it doesn't have be requested again.
TER P o, TAMEEAF AR B, AN E 2 AR — .

The first technique is the easiest to set up and maintain, whereas the second gives you the highest degree of

control.
BRI AR BRE S W EMGEY, T AR R R .
Setting HTTP headers & HTTP 3k

If you want your Ajax responses to be cached by the browser, you must use GET to make the request. But
simply using GET isn't sufficient; you must also send the correct HTTP headers with the response. The Expires
header tells the browser how long a response can be cached. The value is a date; after that date has passed, any

requests for that URL will stop being delivered from cache and will instead be passed on to the server. Here is

what an Expires header looks like:

WERARA R Ajax WINARSCBERS I WS BT G2 47, AR ZFE SR SRINE A GET J5i. (HIZIEATE7 S
PRUAZRAE M AR SC RS TR HTTP ko Expires Sk YRl 55 as Ay 4 Z2 47 W W 1) SC 2K IR TR) . HAE R — A
HH, i 2 5T % URL AR ERAA A GAF R AT, M EHU MRS 8. —> Expires 2k

e

Expires: Mon, 28 Jul 2014 23:30:00 GMT

This particular Expires header tells the browser to cache this response until July 2014. This is called a far

future Expires header, and it is useful for content that will never change, such as images or static data sets.

AR FRIK) Expires Skt YR o S A7 ML AAR SCE 2 2014 48 7 H XA BT IR IREZ R K Expires Sk,
T HBESRA AR IR, Bilin B 7 s & HudE 46

The date in an Expires header is a GMT date. It can be set in PHP using this code:

Expires Sx*F i H#E GMT Hi#fl. ‘&7F PHP R i MU 5 E

$lifetime = 7 * 24 * 60 * 60; // 7 days, in seconds.

header('Expires: ' . gmdate('D, d M Y H:i:s', time() + $lifetime) . ' GMT");

This will tell the browser to cache the file for 7 days. To set a far future Expires header, set the lifetime to

something longer; this example tells the browser to cache the file for 10 years:

R VR A A I 7 K. BEBUE —MERK Expires Sk, BEM A BRI, TN
R A S A ST 10 £

$lifetime = 10 * 365 * 24 * 60 * 60; // 10 years, in seconds.

header('Expires: ' . gmdate('D, d M Y H:i:s', time() + $lifetime) . ' GMT");

An Expires header is the easiest way to make sure your Ajax responses are cached on the browser. You don't
have to change anything in your client-side code, and can continue to make Ajax requests normally, knowing that
the browser will send the request on to the server only if the file isn't in cache. It's also easy to implement on the
server side, as all languages allow you to set headers in one way or another. This is the simplest approach to

ensuring your data is cached.

—™ Expires kSRR ST A5 52 17 Ajax W WARSCIR (] BIK) 7 ids o RN TG B0 P S (KA AUAG, 7T 4k
SEH A Ajax 153K, BRI R A SUEAESAE L N AR SR A IR 55 4 IXAENR 55 4 1
B G5B, BT i S # e Rl B OB BB Bk RO ARIE VR IR HE e 2 A7 10 B] B0 535

Storing data locally ZHbArfEE

Instead of relying on the browser to handle caching, you can also do it in a more manual fashion, by storing
the responses you receive from the server. This can be done by putting the response text into an object, keyed by
the URL used to fetch it. Here is an example of an XHR wrapper that first checks to see whether a URL has been

fetched before:

B TR B AR AL IR G2 AF 2 A, RS T LU T LA, B A IS 8 A TR 5% #0528 Aty i 4R 52
PR DARSCAF IR — X5, BLURL A8ERSIE. K> XHR 23, EHLRAE > URL It
R A5 U 3

var localCache = {};
function xhrRequest(url, callback) {
// Check the local cache for this URL.
if (localCache[url]) {
callback.success(localCache[url]);
return;
§
// TIf this URL wasn't found in the cache, make the request.
var req = createXhrObject();
req.onerror = function() {
callback.error();
s
req.onreadystatechange = function() {
if (req.readyState == 4) {
if (req.responseText ==="' || req.status == '404") {
callback.error();
return;
§
// Store the response on the local cache.
localCache[url] = req.responseText;

callback.success(req.responseText);

-

¥

req.open("GET", url, true);

req.send(null);

-

Overall, setting an Expires header is a better solution. It's easier to do and it caches responses across page
loads and sessions. But a manual cache can be useful in situations where you want to be able to programmatically
expire a cache and fetch fresh data. Imagine a situation where you would like to use cached data for every request,
except when the user takes an action that causes one or more of the cached responses to become invalid. In this

case, removing those responses from the cache is trivial:

KA, BCE A Expires SR BAFRIMRIRTT %6 XA 5, T HIHZEA7 YA 7T LAES 0 e & 5 o
Wi 10— T T RAF AT URE I R AR G2A7 AR BORT O Bt o« BB FE DL, OB BRI SR S HUR
JHP AT e A LA @ 2N D NARSCAR B o IR N AAZEAF A R L 73 2

delete localCache['/user/friendlist/'];

delete localCache['/user/contactlist/'];

A local cache also works well for users browsing on mobile devices. Most of the browsers on such devices

have small or nonexistent caches, and a manual cache is the best option for preventing unnecessary requests.

A GEAF W P ARG TAE TR et b e v BRI SS9 A7 N AR AR AAAAE, T A7 B
AL ELE R e R 7%

Know the Limitations of Your Ajax Library T ## Ajax FERIFR I

All JavaScript libraries give you access to an Ajax object, which normalizes the differences between browsers
and gives you a consistent interface. Most of the time this is a very good thing, as it allows you to focus on your
project rather than the details of how XHR works in some obscure browser. However, in giving you a unified
interface, these libraries must also simplify the interface, because not every browser implements each feature Thie

prevents you from accessing the full power of XMLHttpRequest.

FF4 JavaScript FE SSVFIRITI]—A Ajax X%, T RHERMAZ RO R, kA B30 . K2 %
W TR 0T, B R T LLSSTE AR, TS TSt R (00 W% XHR [TAEAT . 4RTT,
BT ARG BT, AL, B A B WSS ARSI T AN ThRE . B A

i 1] XMLHttpRequest H5 22 T fE .

Some of the techniques we covered in this chapter can be implemented only by accessing the XHR object
directly. Most notable of these is the streaming feature of multipart XHR. By listening for readyState 3, we can
start to slice up a large response before it's completely received. This allows us to handle pieces of the response in
real time, and it is one of the reasons that MXHR improves performance so much. Most JavaScript libraries,
though, do not give you direct access to the readystatechange event. This means you must wait until the entire

response is received (which may be a considerable amount of time) before you can start to use any part of it.

ARFE A A SRR K el BT) XHR XSSl EERREEZ 7 XHR SoR T2 A 2]
ViIfE. LMW readyState 3, FATHE NI BLAR SCR AT 78 SR ATUT S RITE « XA HA AT L
SEIR AR BEAR ST R 7, X AR 2 MXHR BERS K 4R MR RE I I N2 — o AN K2 % JavaScript EAN L VAR H
15 [readystatechange S o KRR L A0S A5 48 W AR SCHRMGE (T BE e — MG R IR E])D) 285
A B E .

Using the XMLHttpRequest object directly is not as daunting as it seems. A few quirks aside, the most recent
versions of all major browsers support the XMLHttpRequest object in the same way, and all offer access to the
different readyStates. You can support older versions of IE with just a few more lines of code. Here is an
example of a function that will return an XHR object, which you can then interact with directly (this is a modified

version of what the YUI 2 Connection Manager uses):

HHAE A XMLHttpRequest X R I ARG EH AR A28 Mo Fr—2N AT H 2250, Frf F0 b ds i i
FCA R LARIAE 75 505255 XMLHttpRequest X152, BJaI 5] AR readyStates. 01 R AVRE SR A 1E,
ATEEZUTAS . FIHE 7 h R EOR Bl —A XHR 3%, R LLEERA (X2 YU 2 S as
FHE R IRRAS)

function createXhrObject() {
var msxml_progid = [

™MSXML2.XMLHTTP.6.0',

™MSXML3.XMLHTTP',
'Microsoft. XMLHTTP", // Doesn't support readyState 3.
'MSXML2.XMLHTTP.3.0', // Doesn't support readyState 3.
I;
var req;

try {

req = new XMLHttpRequest(); // Try the standard way first.
§
catch(e) {
for (var 1 =0, len = msxml progid.length; i <len; ++1) {
try {
req = new ActiveXObject(msxml progid[i]);
break;
H
catch(e2) { }
§

§
finally {

return req;

}

This will first try the versions of XMLH(ttp that do support readyState 3, and then fall back to the ones that

don't in case those versions aren't available.

BB A EAR S readyState 3) XMLHttpRequest, 4K Ji5 [B15% 2 AR LA SRR AR R A o

Interacting directly with the XHR object also reduces the amount of function overhead, further improving
performance. Just beware that by forgoing the use of an Ajax library, you may encounter some problems with

older and more obscure browsers.

FLARAF XHR MR T BOT 8, dt— DR I rhag. R2ROTHE Ajax . (RATRESTE AT
i weic el =T TF <

Summary 45

High-performance Ajax consists of knowing the specific requirements of your situation and selecting the

correct data format and transmission technique to match.
HrEBE Ajax BLFE: ANIEURITH M EARTRSR, IEREIE S AR & N S AR AR R AR .

As data formats, plain text and HTML are highly situational, but they can save CPU cycles on the client side.
XML is widely available and supported almost everywhere, but it is extremely verbose and slow to parse. JSON is
lightweight and quick to parse (when treated as native code and not a string), and almost as interoperable as XML.
Character-delimited custom formats are extremely lightweight and the quickest to parse for large datasets, but

may take additional programming effort to format on the server side and parse on the client side.

Ve Bt s, 4SRN HTML &2 BRI, (HEAT 48 % 5m i) CPU JE 8. XML #Z A
Tl >y, (EEARRE LK B 2218, JSON ZREHN, MirtE (AR m AR TR) , &
S XML M. FRFober BE s TEE R, FERESIREMITIN R R, B/ 25 505N
FEFFFE IR 5 dsim M i 3, FFAE R o AT o

When requesting data, XHR gives you the most control and flexibility when pulling from the page's domain,
though it treats all incoming data as a string, potentially slowing down the parse times. Dynamic script tag
insertion, on the other hand, allows for cross-domain requests and native execution of JavaScript and JSON,
though it offers a less robust interface and cannot read headers or response codes. Multipart XHR can be used to
reduce the number of requests, and can handle different file types in a single response, though it does not cache
the resources received. When sending data, image beacons are a simple and efficient approach. XHR can also be

used to send large amounts of data in a POST.

0 I\ DU SR B, XHR SR A o8 i i R, R e I e AR — N A
XA BT . S — 7, SRR A BOR SCVRIS S KN A HIZ 1T JavaScript Al)
BAREREOAME 24, 1 BARERERS BB AR SRS . 2887 XHR Al R dcE, »

TR 3 AR AL IR AN RN SRR T, VS EANBE SR A B N AR S o 2 Rk B PR i, EIMBAT b e B 1] PR A i
HREF7i%5. XHR A f] POST ik Rz RKEHE.

In addition to these formats and transmission techniques, there are several guidelines that will help your Ajax

appear to be faster:
BRix Letg AR BOR 2 4h, A — S ENA B T3k — P4 = Ajax T
* Reduce the number of requests you make, either by concatenating JavaScript and CSS files, or by using MXHR.
Jl/E Sk FE, WIEId JavaScript 1 CSS CAFFT 4, 8l MXHR.

* Improve the perceived loading time of your page by using Ajax to fetch less important files after the rest of the

page has loaded.

SR T BN BN (], AR RS AN S, AE T Ajax SRV B E ST

* Ensure your code fails gracefully and can handle problems on the server side.
TR RHR AN H R BoR G 7, JRTE IR S5 dedm AL B AR IR

* Know when to use a robust Ajax library and when to write your own low-level Ajax code.
FLATIAE A — MBI Ajax FE, (TINGE B CHIK)Z Ajax U5,

Ajax offers one of the largest areas for potential performance improvements on your site, both because so
many sites use asynchronous requests heavily and because it can offer solutions to problems that aren't even
related to it, such as having too many resources to load. Creative use of XHR can be the difference between a
sluggish, uninviting page and one that responds quickly and efficiently; it can be the difference between a site that

users hate to interact with and one that they love.

Ajax EARTHR R il e BE 2 i K B X —, - DR 22 Wb KA 2Bk, R e Rt
T AR B R)y %8, IR, 20MBOR 2 W, X XHR (815 PEAY A 2 ik pa & 4>

AL, BRI AN KA S, TR ROR I H S AR AL T ARG EA R, R e
% be.

% J\E Programming Practices ZmFESLER

Every programming language has pain points and inefficient patterns that develop over time. The appearance
of these traits occurs as people migrate to the language and start pushing its boundaries. Since 2005, when the
term "Ajax" emerged, web developers have pushed JavaScript and the browser further than it was ever pushed
before. As a result, some very specific patterns emerged, both as best practices and as suboptimal ones. These

patterns arise because of the very nature of JavaScript on the Web.

TR ERTE 5 AT A 1 BRI SRR I (R RS AN A e . URRITE T, MR 19 AT T S A
MIZFE S, AEMreiia . 52005 LK, UARE“Ajax” L, 9 5T &8 %) JavaScript A1) b
FRIOHEEAE AT I DA . AR I T — 2w BB, B (RS5O E AR i . X8
B I, RER 4% | JavaScript FOPETHE K)o

Avoid Double Evaluation % — RVEAH

JavaScript, like many scripting languages, allows you to take a string containing code and execute it from
within running code. There are four standard ways to accomplish this: eval_r(), the Function() constructor,
setTimeout(), and setInterval(). Each of these functions allows you to pass in a string of JavaScript code and

have it executed. Some examples:

JavaScript 5V ZBIAE T —FE, ARVFIRERET PR — MM PR R ARG IB1TE . A WM
J7{ERTLASEER : eval (), Function)#4i& %%, setTimeout()R setlnterval(). &4~ R VR — 5 JavaScript

16, WIEEiTEe. filn.

var numl =5,

num2 = 6,

//eval 1() evaluating a string of code
result = eval_r("numl + num?2"),

//Function() evaluating strings of code

sum = new Function("argl", "arg2", "return argl + arg2");
//setTimeout() evaluating a string of code
setTimeout("sum = numl + num2", 100);
//setInterval() evaluating a string of code

setlnterval("sum = numl + num2", 100);

Whenever you're evaluating JavaScript code from within JavaScript code, you incur a double evaluation
penalty. This code is first evaluated as normal, and then, while executing, another evaluation happens to execute
the code contained in a string. Double evaluation is a costly operation and takes much longer than if the same

code were included natively.

4R JavaScript (UL FHRAT (53 —BL) JavaSeript {RTDHE, FROTH ~IRIFAIACH . JLACHS B SEHAR A,
HIERARD, REFERATIERRF, AT T4 B P IO A5 — KPR . PR T 5 SRR A
5 B H 0 B AR N PRA AR Lt 5 FH BRI

As a point of comparison, the time it takes to access an array item varies from browser to browser but varies

far more dramatically when the array item is accessed using eval_r(). For example:

YR — N EEE a, ANRI S & BT 1) — A Ee i B & P IR TR) 5 AT ANRD, (B RAE T eval r()15] HL 45
Rt KMt EE. flhn.

//faster
var item = array[0];
//slower

var item = eval r("array[0]");

The difference across browsers becomes dramatic if 10,000 array items are read using eval r() instead of

native code. Table 8-1 shows the different times for this operation.

WERAE] eval U HARACHS T 101000 NI, FEARR W& B E R AR E R, £ 8-1 Wr T
TRECHRAT B B IR

Table 8-1. Speed comparison of native code versus eval r() for accessing 10,000 array items

* 81 HIEAEL eval r()U7 i 10'000 > I f5H L ELEL

Browser Native code (ms)
Firefox 3 10.57

Firefox 3.5 0.72

{hrome 1 57

{hrome 2 517

Internet Explorer 7 31.25
Internet Explorer 8 40.06

(pera 9.64 2m

Opera 10 Beta 10,52
Safarid.2 30.37
Safarid 1216

eval() code(ms)
822,62
141.54
106.41
54.55
5086,13
420.55
402.82
315.16
360.6
54.47

This dramatic difference in array item access time is due to the creation of a new interpreter/compiler instance

each time eval_r() is called. The same process occurs for Function(), setTimeout(), and setInterval(),

automatically making code execution slower.

Vi B i 8] B ERZE R, RFRAERIEH eval rOR ZAJE —ASHI R/ gnid L. [RIFER R
& A4 7F Function(), setTimeout()H setnterval() L., B FEACHE AT HE LS .

Most of the time, there is no need to use eval_r() or Function(), and it's best to avoid them whenever possible.

For the other two functions, setTimeout() and setInterval(), it's recommended to pass in a function as the first

argument instead of a string. For example:

KREHHH T, BLE A eval r()aL Function(), WIRFEERIE, REEAMEHEN. 2T H4HEA R
1, setTimeout()H setnterval(), U —NSHAEN—ANREGMA R —FFFH . Fln:

setTimeout(function(){
sum = numl + num2;

}, 100);

setInterval(function(){
sum = numl + num2;

}> 100);

Avoiding double evaluation is key to achieving the most optimal JavaScript runtime performance possible.

BEG RPN R SE I B LA I JavaScript 12 4T B PR BER <8 .

Use Object/Array Literals XS /A EER

There are multiple ways to create objects and arrays in JavaScript, but nothing is faster than creating object

and array literals. Without using literals, typical object creation and assignment looks like this:

f£ JavaScript A L HONERIER SR, ERAT AL EMEH EEREIR 7 WERAME
HAE, MR G E BN (A AR

//create an object

var myObject = new Object();
myObject.name = "Nicholas";
myObject.count = 50;
myObject.flag = true;
myObject.pointer = null;
//create an array

var myArray = new Array();
myArray[0] = "Nicholas";
myArray[1] = 50;
myArray[2] = true;

myArray[3] = null;

Although there is technically nothing wrong with this approach, literals are evaluated faster. As an added
bonus, literals take up less space in your code, so the overall file size is smaller. The previous code can be

rewritten using literals in the following way:

BIRTERIAR EIRMMEBA A AR, HIEEWEMR . 8 —DBONALFAL, HiIEEAERAE+ 4
AR, B DA SO RS AT ASE /o BT AR T B R S 0 R i RE

//create an object
var myObject = {
name: "Nicholas",
count: 50,
flag: true,
pointer: null
s

//create an array

var myArray = ["Nicholas", 50, true, null];

The end result of this code is the same as the previous version, but it is executed faster in almost all browsers
(Firefox 3.5 shows almost no difference). As the number of object properties and array items increases, so too

does the benefit of using literals.

PR AR R BT T R ARAAR [F], (B2)L B A e ds EIZAT SR (FE Firefox 3.5 EJLFHIXHD o BE
FER G RN E A TG, AT E R R A A R EE K.

Don't Repeat Work AEEE T1E

One of the primary performance optimization techniques in computer science overall is work avoidance. The
concept of work avoidance really means two things: don't do work that isn't required, and don't repeat work that
has already been completed. The first part is usually easy to identify as code is being refactored. The second
part—not repeating work—is usually more difficult to identify because work may be repeated in any number of

places and for any number of reasons.

FEVH AR Wl B B PR RE LA SR — Sl S AT o o AR PO S b BRI P A2
A BER A, AEEEMOLERN T, B 0@ E A RN S TR, B o fr—AEES
TAF——JE W LU E D A rTRE Dy %t PRI T AEAR 22 M 5 i R

Perhaps the most common type of repeated work is browser detection. A lot of code has forks based on the
browser's capabilities. Consider event handler addition and removal as an example. Typical cross-browser ¢

for this purpose looks like the following:

WVF Bl WA B R AR R R W S s Al o R AR T b s i ThBe . AR GO IS NN R A
1, AL S AR T

function addHandler(target, eventType, handler) {
if (target.addEventListener){ /DOM2 Events
target.addEventListener(eventType, handler, false);
}else { //IE
target.attachEvent("on" + eventType, handler);
H
§

function removeHandler(target, eventType, handler) {
if (target.removeEventListener){ /DOM2 Events
target.removeEventListener(eventType, handler, false);
}else { //IE

target.detachEvent("on" + eventType, handler);

}

The code checks for DOM Level 2 Events support by testing for addEventListener() and
removeEventListener(), which is supported by all modern browsers except Internet Explorer. If these methods

don't exist on the target, then IE is assumed and the IE-specific methods are used.

ARHS E 5 5R addEventListener() removeEventListener()f6 £&r DOM 2k 5l 2 HI=F A4S FFtE M, T HER
#I% Internet Explorer Z AN FTA BACH W48 AT 2R W RIX By EANAEAE T target 1, AS-A 50 2400
WASE IE, JATH IE REA T E.

At first glance, these functions look fairly optimized for their purpose. The hidden performance issue is in the
repeated work done each time either function is called. Each time, the same check is made to see whether a certain
method is present. If you assume that the only values for target are actually DOM objects, and that the user
doesn't magically change his browser while the page is loaded, then this evaluation is repetitive. If

addEventListener() was present on the first call to addHandler() then it's going to be present for each

subsequent call. Repeating the same work with every call to a function is wasteful, and there are a couple of ways

to avoid it.

F—F, RERHCHSEIEAT B I C & 2B . B AE i) U7 TR R EOR FH I AT EE
o BF—IR, #BATRREORE, GHEEMITEREFEE. WRIREGX target ME—I{EHAZ DOM X%,
117 HL 7 ANFT BEAE BT TN 25 BEA At A i i, A ARXAFIr st 2 R . WR addHandler()— Fk
L] addEventListener()A8 A £ J& B2 18 I #8 22 H DK A ARG o 7R RRJCOR R SR [RIAF 0 TAF = —FHiR 3%,
EEEZUPARTS i Ry S

Lazy Loading JER N

The first way to eliminate work repetition in functions is through lazy loading. Lazy loading means that no
work is done until the information is necessary. In the case of the previous example, there is no need to determine
which way to attach or detach event handlers until someone makes a call to the function. Lazy-loaded versions of

the previous functions look like this:

H—FHER A BT B AR 7 A BRI . AEIE N R R Ve S B 2 R AMEAT AT AR fE
AUTANF B -, AN T S0 WA PR A R el sy S A E0 i, E2IA AW g 2. A8 A RE iR n 2 R
B

function addHandler(target, eventType, handler) {
//overwrite the existing function
if (target.addEventListener){ /DOM2 Events
addHandler = function(target, eventType, handler){
target.addEventListener(eventType, handler, false);
s
}else { //IE
addHandler = function(target, eventType, handler){
target.attachEvent("on" + eventType, handler);
s
H

//call the new function

addHandler(target, eventType, handler);
H
function removeHandler(target, eventType, handler) {
/loverwrite the existing function
if (target.removeEventListener){ /DOM2 Events
removeHandler = function(target, eventType, handler){
target.addEventListener(eventType, handler, false);
s
} else { //IE
removeHandler = function(target, eventType, handler){
target.detachEvent("on" + eventType, handler);
s
H
//call the new function

removeHandler(target, eventType, handler);

These two functions implement a lazy-loading pattern. The first time either method is called, a check is made
to determine the appropriate way to attach or detach the event handler. Then, the original function is overwritten
with a new function that contains just the appropriate course of action. The last step during that first function call
is to execute the new function with the original arguments. Each subsequent call to addHandler() or

removeHandler() avoids further detection because the detection code was overwritten by a new function.

TP B HMK TR SR B A ST e IX PRSI VR SR — IR IR IR, A A — I e Al PR A v B
SIS RS, JREG R EC A G A YR TR BE 1 T o BJSWRUI R BRI R S E RS .
LU 9 A addHandler()E% 7 removeHandler() i AN ox FRREZM, RO RMACHS O g Bk 8 &5 T o

Calling a lazy-loading function always takes longer the first time because it must run the detection and then
make a call to another function to accomplish the task. Subsequent calls to the same function, however, are much
faster since they have no detection logic. Lazy loading is best used when the function won't be used immedi

on the page.

i FH A D028 R B AR AR B — A P IR 1], PR & b U AT A ISR e W) 5 — A e LA 5 A T
%o B, JEERMIFE R E N, RO AT REZ AR 1o SR INAGE] T o B S 7 DU 57
HIgH 2105

Conditional Advance Loading Z&fFFUIN#

An alternative to lazy-loading functions is conditional advance loading, which does the detection upfront,
while the script is loading, instead of waiting for the function call. The detection is still done just once, but it

comes earlier in the process. For example:

BRAEIS N Z AN T — MOTIERR R 4 F TN, EERIA B T ar g rid, mA SR BoR .
R IAT H2— R, (BFE L R R AR, Bt

var addHandler = document.body.addEventListener ?
function(target, eventType, handler){
target.addEventListener(eventType, handler, false);
}:
function(target, eventType, handler){
target.attachEvent("on" + eventType, handler);
s
var removeHandler = document.body.removeEventListener ?
function(target, eventType, handler){
target.removeEventListener(eventType, handler, false);
}:
function(target, eventType, handler){

target.detachEvent("on" + eventType, handler);

55

This example checks to see whether addEventListener() and removeEventListener() are present and then
uses that information to assign the most appropriate function. The ternary operator returns the DOM Level 2
function if these methods are present and otherwise returns the IE-specific function. The result is that all cal

addHandler() and removeHandler() are equally fast, as the detection cost occurs upfront.

XA F# A addEventListener()F1 removeEventListener()& & 4715, 28 G ARHE A5 B8 & & A& A A% .
—IJCHEAEFRTIR] DOM 2251 2 IR 2, W R EATAEAE s, 75 W3R [0] TE R 1 B 3. 28)5, 1A] addHandler()
F1 removeHandler()[FIFFR R, BARKIMTHBERERT T o

Conditional advance loading ensures that all calls to the function take the same amount of time. The trade-off
is that the detection occurs as the script is loading rather than later. Advance loading is best to use when a function

is going to be used right away and then again frequently throughout the lifetime of the page.

AT A OR BT AT & K0 A IR TRIAR () AR AR BA I B HEAT Rl FIUARBGE]+ — i B 1
SRR, o HAEEES DU A A IR e A S & .

Use the Fast Parts i F 3 BB 5E 5

Even though JavaScript is often blamed for being slow, there are parts of the language that are incredibly fast.
This should come as no surprise, since JavaScript engines are built in lower-level languages and are therefore
compiled. Though it's easy to blame the engine when JavaScript appears slow, the engine is typically the fastest
part of the process; it's your code that is actually running slowly. There are parts of the engine that are much faster

than others because they allow you to bypass the slow parts.

SR JavaScript LHPSETTLENE, IRMILTH 5 RO LER > HATE LLE g . R AT
JavaScript 512 HRGE T 2. AR JavaScript MR E 5 #14 T 515, S5 | 2w 2 s id e+
RPRAIER 7Y, SEbr BRI RRAS . T BRI R LR IR 2, PO EAT oIRGB
1 EE 7

b

Bitwise Operators {7#/EI2 BT

Bitwise operators are one of the most frequently misunderstood aspects of JavaScript. General opinion is that
developers don't understand how to use these operators and frequently mistake them for their Boolean equivalents.

As a result, bitwise operators are used infrequently in JavaScript development, despite their advantages.

NARAEIB AT 2 JavaScript P E W IRMBIINE L —. —MIEE, PR ANEIIE e i X L5 4
T, SEEAm R FE PR 4R 52 JavaScript 7T R RFAVE AV EBFEES, REENEAM0NS

JavaScript numbers are all stored in [IEEE-754 64-bit format. For bitwise operations, though, the number is
converted into a signed 32-bit representation. Each operator then works directly on this 32-bit representation to
achieve a result. Despite the conversion, this process is incredibly fast when compared to other mathematical and

Boolean operations in JavaScript.

JavaScript F £ $4 # IEEE-754 brifE 64 iR A fite fEAIeH A, P el a5 5 32 fikg .
BER AR B R A AR 32 M B ESe B A R . R 28, AR S JavaScript FH AR AN A /K
BE ISR .

If you're unfamiliar with binary representation of numbers, JavaScript makes it easy to convert a number into a

string containing its binary equivalent by using the toString() method and passing in the number 2. For example:

R RS H 7) BRI ORIE A A, JavaScript AT AR A 5y ol 80 B o 475 L AR — b RRis
o B toString() 7 ZIFAEAECY 2 (MSHD o Hln:

var numl = 25,
num?2 = 3;
alert(num1.toString(2)); //"11001"

alert(num?2.toString(2)); // "11"

Note that this representation omits the leading zeros of a number.

R, ZRIEUER TR s .

There are four bitwise logic operators in JavaScript:

JavaScript A VYRR 12 VR -

Bitwise AND {75

Returns a number with a 1 in each bit where both numbers have a 1

PRI E RO AR 1, HiRATE 1

Bitwise OR fi7.5,

Returns a number with a 1 in each bit where either number has a 1

A AR 1, SERME 1

Bitwise XOR v/ 7 Hk,

Returns a number with a 1 in each bit where exactly one number has a 1

PR 1, ERA R

Bitwise NOT f73E

Returns 1 in each position where the number has a 0 and vice versa

B0 RN 1, IR

These operators are used as follows:

IRECERARAT FE W T

//bitwise AND

var resultl =25 & 3; //1
alert(result.toString(2)); /" 1"
//bitwise OR

var result2 =25 | 3; //27
alert(resul2.toString(2)); /"11011"
//bitwise XOR

var result3 =25~ 3;//26
alert(resul3.toString(2)); /"11000"
//bitwise NOT

var result = ~25; //-26

alert(resul2.toString(2)); //"-11010"

There are a couple of ways to use bitwise operators to speed up your JavaScript. The first is to use bitwise
operations instead of pure mathematical operations. For example, it's common to alternate table row colors by

calculating the modulus of 2 for a given number, such as:

AVF 22 I v LT A2 54T 1R i JavaScript FGE L. H o] U RO ST e Fea 4t B, T

ORI 2 BB SESEIRAT A A o, il

for (var i=0, len=rows.length; i <len; i++){
if (1% 2) {
className = "even";
} else {
className = "odd";

}

//apply class

Calculating mod 2 requires the number to be divided by 2 to determine the remainder. If you were to look at
the underlying 32-bit representation of numbers, a number is even if its first bit is 0 and is odd if its first bit is 1.
This can easily be determined by using a bitwise AND operation on a given number and the number 1. When the
number is even, the result of bitwise AND 1 is 0; when the number is odd, the result of bitwise AND 1 is 1. That

means the previous code can be rewritten as follows:

VREXS 2 BB, RN ERU 2 REEE RS WRIRER 32 B TFRIRE (D R,
e RIABE B A2 0, A ER AR AL 1o MR BB R EL, A ET | BATAL S B R4 B0 0;
WRILECON A EL A AEN 1 BT S EAF R RUE 1. Bt Ui B p SR rT LU S 4T

for (var i=0, len=rows.length; i <len; i++){
if&l){
className = "odd";
} else {

className = "even";

//apply class

Although the code change is small, the bitwise AND version is up to 50% faster than the original (depending

on the browser).

BRI AR, BEALSRA FR GRS R T 50% (HUGRTIBES) .

The second way to use bitwise operators is a technique known as a bitmask. Bitmasking is a popular technique
in computer science when there are a number of Boolean options that may be present at the same time. The idea is
to use each bit of a single number to indicate whether or not the option is present, effectively turning the number
into an array of Boolean flags. Each option is given a value equivalent to a power of 2 so that the mask works. For

example:

B R AL BRA R I BARBRAE AL FERS o A7 FERS ARV EUREE o — R RIS, AT RIS 2 A A 2K
BRI, P B e AT R bR A A . RS R N R A T2 (R Bl

var OPTION A =1;
var OPTION B =2;
var OPTION C =4;
var OPTION D =8§;

var OPTION_E = 16;

With the options defined, you can create a single number that contains multiple settings using the bitwise OR

operator:

T 5E SRR, ARAT LU A7 B i — N R B 2 AR

var options = OPTION_A | OPTION C | OPTION _D;

You can then check whether a given option is available by using the bitwise AND operator. The operation

returns 0 if the option isn't set and 1 if the option is set:

PR UM I SR & — A E R IR A v o W BNZE R BCE WIS H AT R0 0, Wi T

LIBFERN 1

//is option A in the list?

if (options & OPTION_A){
//do something

§

//is option B in the list?

if (options & OPTION_B){

//do something

-

Bitmask operations such as this are quite fast because, as mentioned previously, the work is happening at a
lower level of the system. If there are a number of options that are being saved together and checked frequently,

bitmasks can help to speed up the overall approach.

BIXAER ISR R, ERDY AT 2 R A, AR R AR RRIRIZ . RV 2B R il
Hewa, AREA Tt ArERE.

Native Methods JRA4: 5%

No matter how optimal your JavaScript code is, it will never be faster than the native methods provided by the
JavaScript engine. The reason for this is simple: the native parts of JavaScript—those already present in the
browser before you write a line of code—are all written in a lower-level language such as C++. That means these
methods are compiled down to machine code as part of the browser and therefore don't have the same limitations

as your JavaScript code.

T AREFEEAL JavaScript £810, EARKIZEAS LY JavaScript 51 ZEHE AR R AR A I . HBR R+ Ty 5
JavaScript R AT —EREREZATENCEFE TS H T —HEMAKRIGES BN, W
CHto IXEIRE XTGP LA 09, 1E N s —35655, AMEARA JavaScript AR IRFEA R4 £
PR

A common mistake of inexperienced JavaScript developers is to perform complex mathematical operations in

code when there are better performing versions available on the built-in Math object. The Math object contains

properties and methods designed to make mathematical operations easier. There are several mathematical

constants available:

2245 N LY JavaScript JTAH L2 H AR — MO RS TR 3T AR ECEI2 B, BCA UM A E Math
XGRS LV BE EAF I ARA . Math XTRQE LTI EYERUNE, ErRieFE R S KR — 284

AL

Constant

Math.
.LN16

Math
Math
Math
Math
Math
Math
Math

E

JLN2
.LOG2E
-LOG1DE
PI
.SORT1 2
-SORT2

Meaning

The value of E, the base of the natural logarithm
The natural logarithm of 10

The natural logarithm of 2

The base-2 logarithm of £

The base-10 logarithm of E

The value of n

The square root of ¥

The square root of 2

Each of these values is precalculated, so there is no need for you to calculate them yourself. There are also

methods to handle mathematical calculations:

RN AR PO AR, BrUR AT E B SR REAT. I — S AIE 5)5 i

Method Meaning

Math.abs {num) The absolute value of num
Math.exp{num) Math, E™m
Math.log{num) The logarithm of num
Math.pow(num, power) numPoes
Math.sqrt{num) The square oot of num
Math.acos(x) The arc cosine of ¥
Math.asin(x) The arc sine of
Math.atan(x) The arc tangent of x
Math.atan2(y,x) The arc tangent of pd
Math.cos{x) The cosine of x
Math.sin{x) The sine of x
Math.tan(x) The tangent of ¥

Using these methods is faster than recreating the same functionality in JavaScript code. Whenever you need to

perform complex mathematical calculations, look to the Math object first.

A IZ L pR 2 LU [RIAE DI RENY JavaScript fURGEEPR . IR EBHAT B8 EA i 5O, BB E A Math X 5.

Another example is the Selectors API, which allows querying of a DOM document using CSS selectors. CSS
queries were implemented natively in JavaScript and truly popularized by the jQuery JavaScript library. The
jQuery engine is widely considered the fastest engine for CSS querying, but it is still much slower than the native
methods. The native querySelector() and querySelectorAll() methods complete their tasks, on average, in 10%
of the time it takes for JavaScript-based CSS querying. Most JavaScript libraries have now moved to use the

native functionality when available to speed up their overall performance.

T M T RS APL W LUGAE T CSS MR N £ DOM U . CSS il JavaScript A2 5K
PLIIEE jQuery 1X 4 JavaScript JEHESFF oK. jQuery FIEEMIA N ZEARIN CSS Arifl5 1%, (BTt RE
JiiEg . JRAE querySelector()Fl querySelectorAll() /75 5E BB TTIIAT S5 I, T3 L B 5L F JavaScript [1)
CSS A1 10%[1 (Al K24 JavaScript FECEAT A T 5 AR oA £ DU s e AT T B A PR e

Always use native methods when available, especially for mathematical calculations and DOM operations.

The more work that is done with compiled code, the faster your code becomes.

Al ATEA A, REMAAEN], JUHREEEIEEAN DOM #1E. %1 E M2 1, IF
GRS o

Summary 45

JavaScript presents some unique performance challenges related to the way you organize your code. As web
applications have become more advanced, containing more and more lines of JavaScript to function, some

patterns and antipatterns have emerged. Some programming practices to keep in mind:

JavaScript #&H T —L£EURF IR BEPR KL, X RBIRA LRSI 775, W oLy AR S ok s 2, B8 1
JavaScript fCR SR EZ, WL T — B EA . HF I MR AL

* Avoid the double evaluation penalty by avoiding the use of eval_r() and the Function() constructor. Also, pass

functions into setTimeout() and setInterval() instead of strings.

I eval ()R Function()f4 i 2538 G2 — IR TEAY . bk, 45 setTimeout()FH setInterval ()% i iR 20 &
HMARTHR RS

* Use object and array literals when creating new objects and arrays. They are created and initialized faster than

nonliteral forms.
B F N S AA R AN G HEEENEHEEE. elEEEEER @My h L E R,

* Avoid doing the same work repeatedly. Use lazy loading or conditional advance loading when

browser-detection logic is necessary.
G T AT AR AR . 2 SR DU U3 d e, Ao P S IR D s A A TN 2

* When performing mathematical operations, consider using bitwise operators that work directly on the

underlying representation of the number.

BPATHCEAT AN, BIEEERAE, € EEREAT IR E TR

* Native methods are always faster than anything you can write in JavaScript. Use native methods whenever

available.
JAAE 5 e B JavaScript B ARTEEML . R & A R4 T,

As with many of the techniques and approaches covered in this book, you will see the greatest performance

gains when these optimizations are applied to code that is run frequently.

A5 TARZ BN, W RAR LA N AIHE AR L 22 R e AT ARG b, 1ok 7 B BRI RE 32
Tte

% 7LE Building and Deploying High-Performance
JavaScript Applications

SR I E = HEEE J avaScript IV H FEF

According to a 2007 study by Yahoo!'s Exceptional Performance team, 40%—-60% of Yahoo!'s users have an
empty cache experience, and about 20% of all page views are done with an empty cache
(http://yuiblog.com/blog/2007/01/04/performance-research-part-2/). In addition, another more recent study by the
Yahoo! Search team, which was independently confirmed by Steve Souders of Google, indicates that roughly

15% of the content delivered by large websites in the United States is served uncompressed.

R Yahoo! s it RE HIBALE 2007 ST HIWFIT, 40%-60%[¥] Yahoo [/' AT 1 IR AFINE R, K&
20% 0L [P] AN FH 2247 Chittp://yuiblog.com/blog/2007/01/04/performance-research-part-2/) . 7341, Hi Yahoo!
RN IR, FH Google ¥ Steve Souders JTE SE R — B B R, KLY 15%[1 3% L R uk B

LI A BT T

These facts emphasize the need to make sure that JavaScript-based web applications are delivered as
efficiently as possible. While part of that work is done during the design and development cycles, the build and
deployment phase is also essential and often overlooked. If care is not taken during this crucial phase, the

performance of your application will suffer, no matter how much effort you've put into making it faster.

R I AT E O L T JavaScript AR GO AR E ROt A A . BARER 7> TAFFE B T Rl
B e, EMEMEESEEREE BEER2MN. WRERNLELIEF AL DL, RV AHRER
HIPERER Z 210, TR IRERESS e k.

The purpose of this chapter is to give you the necessary knowledge to efficiently assemble and deploy a
JavaScript-based web application. A number of concepts are illustrated using Apache Ant, a Java-based build tool
that has quickly become an industry standard for building applications for the Web. Toward the end of the chapter,

a custom agile build tool written in PHPS is presented as an example.

AE H RS IR Z AR, AR SUEAEE AL T JavaScript (1] Web MR . —2 G
Apache Ant FEAT U, ER—MET Java B TR, FHARPREC TFA M TN AR I TolbAnit:. A
K, gt T —H PHPS ‘5 E HI R i I &K TR A5

Apache Ant

Apache Ant (http://ant.apache.org/) is a tool for automating software build processes. It is similar to make, but
is implemented in Java and uses XML to describe the build process, whereas make uses its own Makefile format.

Ant is a project of the Apache Software Foundation (http://www.apache.org/licenses/).

Apache Ant Chttp://ant.apache.org/) & —~ A ERM T H. &R0 T make, {H7E Java F5CH, JF
fFH XML KRR A AOSFE, 1 make 1 H© B 2./ Makefile 4443, Ant /& Apache BFFE &S —4

TiH: (http://www.apache.org/licenses/)

The main benefit of Ant over make and other tools is its portability. Ant itself is available on many different

platforms, and the format of Ant's build files is platform independent.

Ant 5 make SEHARL THALL, UHAETERIATBAEN. Ant A5 ATHERFZ R4 E, Ant TP
ks G oK.

An Ant build file is written in XML and named build.xml by default. Each build file contains exactly one

project and at least one target. An Ant target can depend on other targets.

B Ant FF RSO R XML R build.xmle 84N & SO R EE—AN 0 H 2> —A sk, —4
Ant HARA AT H T oAl B Arid

Targets contain task elements: actions that are executed atomically. Ant comes with a great number of built-in
tasks, and optional tasks can be added if needed. Also, custom tasks can be developed in Java for use in an Ant

build file.

HARE O SRS TR L L Baliei Tz, Ant BCAKEN BAES, WRFEL TSI TEES .
IEAh, Ant QISR T2 B & SUESS W Java JT &

A project can have a set of properties, or variables. A property has a name and a value. It can be set from
within the build file using the property task, or might be set outside of Ant. A property can be evaluated by

placing its name between ${ and }.

—AIE A SRR NES . NEET R TR AME e R RS A property
ESUE, BHETE Ant ZHME . SIHBIERNER: WRIERTES (A1} 218

The following is an example build file. Running the default target (dist) compiles the Java code contained in

the source directory and packages it as a JAR archive.

NI NIRRT s AT ERA H AR (dist) S IR H S Java AU 3R —> JAR 0.

<?xml version="1.0" encoding="UTF-8"?>

<project name="MyProject" default="dist" basedir=".">

<l-- set global properties for this build -->
<property name="src" location="src"/>
<property name="build" location="build"/>

<property name="dist" location="dist"/>

<target name="init">

<!-- Create the time stamp -->

<tstamp/>

<!-- Create the build directory structure used by compile -->
<mkdir dir="$ {build}"/>

</target>

<target name="compile" depends="init" description="compile the source">
<!-- Compile the java code from ${src} into ${build} -->
<javac srcdir="$ {src}" destdir="$ {build}"/>

</target>

<target name="dist" depends="compile" description="generate the distribution">
<!-- Create the distribution directory -->
<mkdir dir="${dist}/lib"/>
<!-- Put everything in $ {build} into the MyProject-$ {DSTAMP} jar file -->
<jar jarfile="$ {dist}/lib/MyProject-$ {DSTAMP} .jar" basedir="$ {build}"/>

</target>

<target name="clean" description="clean up">
<!-- Delete the ${build} and ${dist} directory trees -->
<delete dir="$ {build}"/>
<delete dir="$ {dist}"/>

</target>

</project>

Although Apache Ant is used to illustrate the core concepts of this chapter, many other tools are availab

build web applications. Among them, it is worth noting that Rake

(http://rake.rubyforge.org/) has been gaining popularity in recent years. Rake is a Rubybased build program with
capabilities similar to make. Most notably, Rakefiles (Rake's version of Makefiles) are written using standard

Ruby syntax, and are therefore platform-independent.

AKX B A Apache Ant SRiIEIIATRZ O E, ©EARZHE TETHTHEM N HER. &
i, {H13 —42E /2 Rake Chttp://rake.rubyforge.org/) CLEHIT JLIFESRAF I & o BAHF1EE /2, Rakefile (Rake
AR) Makefile) f#FHbRiE Ruby 755, WILEAG 6 M.

Combining JavaScript Files & 3f JavaScript 3C4%F

According to Yahoo!'s Exceptional Performance team, the first and probably most important guideline for
speeding up your website, especially for first-time visitors, is to reduce the number of HTTP requests required to
render the page (http://yuiblog.com/blog/2006/11/28/performance-research-part-1/). This is where you should
start looking for optimizations because combining assets usually requires a fairly small amount of work and has

the greatest potential benefit for your users.

R4 Yahoo! sl BE BRI GT, 58— /2 B B)4 o o0 ol P2 PO AR U, 5 7 X S 48 58—k
(e 5% 355 X FE P 5 R o/ G B T 7) HTTP 75K B 2
(http://yuiblog.com/blog/2006/11/28/performance-research-part-1/) o X2 VRO TAERIANT £, BI& I %
Y5 B BB LUAH 24/ B A A FH P A3 B K VB 70 2

Most modern websites use several JavaScript files: usually a small library, which contains a set of utilities and
controls to simplify the development of richly interactive web applications across multiple browsers, and some
site-specific code, split into several logical units to keep the developers sane. CNN (http://www.cnn.com/), for
example, uses the Prototype and Script.aculo.us libraries. Their front page displays a total of 12 external scripts
and more than 20 inline script blocks. One simple optimization would be to group some, if not all, of this code
into one external JavaScript file, thereby dramatically cutting down the number of HTTP requests necessary to

render the page.

R B i/ 22/ JavaScript SCfF: B QR —ANUE, €= TREMZEES LI
SO E AT U AR P T 2, 30T SRt AR, 00 B LA E o T 3 R |

411 CNN Chttp://www.cnn.com/) , {#H] Prototype 1 Script.aculo.us JFE. ‘E I SRR T 12 AN

if 20 A~ A BRBIACER . N a] SO AL R A R IR & O M AMER JavaScript SCPF, AN 488, TR
KBRARIE G sUm B fy HTTP 1 K4

Apache Ant provides the ability to combine several files via the concat task. It is important, however, to
remember that JavaScript files usually need to be concatenated in a specific order to respect dependencies. Once
these dependencies have been established, using a filelist or a combination of fileset elements allows the order of

the files to be preserved. Here is what the Ant target looks like:

Apache Ant i concat fE45$ it &I JLASCAFIIAE S« IXARE 2L, (HJZ 2L AT JavaScript SO 75 22
YRR AR KVRF B IR AT e pe . — FLAUEE TIRMIOC R, (] filelist BRATE] fileset 7GH MIHFIX 263
FERFFARIE T oK. Ant HARPARRE T F

<target name="js.concatenate">
<concat destfile="$ {build.dir}/concatenated.js">

<filelist dir="$ {src.dir}"

files="a.js, b.js"/>

<fileset dir="$ {src.dir}"

includes="* js"

excludes="a.js, b.js"/>
</concat>

</target>

This target creates the file concatenated.js under the build directory, as a result of the concatenation of a.js,

followed by b.js, followed by all the other files under the source directory in alphabetical order.

I HARARLE T A H 5% T O3 concatenated js SCfF, ©EEERE ajs, ARG R bys, KGR H K TILF L)
WSTFP- A HE S A o

Note that if any of the source files (except possibly the last one) does not end with either a semicolon or a line
terminator, the resulting concatenated file may not contain valid JavaScript code. This can be fixed by instructing

Ant to check whether each concatenated source file is terminated by a newline, using the fixlastline attribute:

FERBTAWESTH (TRERR T 85— WERAZ LA 5 BAT AR 4RI, A& SO 25 Rl g
ANBCA AR JavaScript U5, AIIZFEBIE: $878 Ant SRRSO LUFATST R,] fixlastline J&
PE:

<concat destfile="$ {build.dir}/concatenated.js" fixlastline="yes">

</concat>

Preprocessing JavaScript Files A3 JavaScript X4

In computer science, a preprocessor is a program that processes its input data to produce output that is used as
input to another program. The output is said to be a preprocessed form of the input data, which is often used by
some subsequent programs like compilers. The amount and kind of processing done depends on the nature of the
preprocessor; some preprocessors are only capable of performing relatively simple textual substitutions and macro
expansions, while others have the power of fully fledged programming

languages.—http://en.wikipedia.org/wiki/Preprocessor

TEVFERURRE o, AL E$ A 55 T4 i N B8 b T A 5 — i R85 1 PR RO B8« & ot 2 Tk
AT R 2o PR E RS AR, E R R SR P A, g e as . PUALHE RO B AR AL 5 79
ARSI PEIRAT 5%, A SETAL BE A% R B AR B fa] B0 SO N 230 e, M0 o — SR Mok sE e e i 5

(R RD

—http://en.wikipedia.org/wiki/Preprocessor

Preprocessing your JavaScript source files will not make your application faster by itself, but it will allow you
to, among other things, conditionally instrument your code in order to measure how your application is

performing.

TiAk B Y JavaScript PO IF A SALIRIIRE P R, (BB VRIS FIMAREE S 4 A1 L5
P, Bl A fAdm A — L5 IR, SRAET BRI PR RE

Since no preprocessor is specifically designed to work with JavaScript, it is necessary to use a lexical
preprocessor that is flexible enough that its lexical analysis rules can be customized, or else use one that was
designed to work with a language for which the lexical grammar is close enough to JavaScript's own lexical

grammar. Since the C programming language syntax is close to JavaScript, the C preprocessor (cpp) is a good

choice. Here is what the Ant target looks like:

T %A %1124 JavaScript Wil M FAC IR RS, A LEATH —MAEIG LS, 208 R, v el H A
EAHTR, BE A — A RS b TR, HOAVETEES JavaScript H QAR VL £
T C 1B S EVA#ET JavaScript, C FALFEZS (epp) B —MMBTHIERE. Ant HbrEWT:

<target name="js.preprocess" depends="js.concatenate'">
<apply executable="cpp" dest="%$ {build.dir}">

<fileset dir="$ {build.dir}"

includes="concatenated.js"/>
<arg line="-P -C -DDEBUG"/>
<srcfile/>
<targetfile/>

<mapper type="glob"
from="concatenated.js"

to="preprocessed.js"/>
</apply>

</target>

This target, which depends on the js.concatenate target, creates the file preprocessed.js under the build

directory as a result of running cpp on the previously concatenated file. Note that cpp is run using the stand=rd -P

(inhibit generation of line markers) and -C (do not discard comments) options. In this example, the DEBUG

macro is also defined.

X — HAEMKBT js.concatenate H¥R, & 7E R0 FERE SCHEHIEAT cpp, HEEBIETEFF A H T 2
preprocessed.js 3. R cpp i HARHE-P (FIHIZARICAERD Fl-c CRAMIBRIERS) LI, XA 5k

£ X T DEBUG %:.

With this target, you can now use the macro definition (#define, #undef) and the conditional compilation (#if,
#ifdef, #ifndef, #else, #elif, #endif) directives directly inside your JavaScript files, allowing you, for example, to

conditionally embed (or remove) profiling code:

A TR, PRI T UL E AL JavaScript SCIE A E X (#define, #undef) FIZFFSNIE (#if,
#ifdef, #ifndef, #else, #elif, #endif) 54 . #lan, RATDMEH AR (EOER) DA

#ifdef DEBUG

(new YAHOO.util.YUILoader({
require: ['profiler'],
onSuccess: function(o) {
Y AHOO.tool.Profiler.registerFunction('foo', window);
§

}))-insert();

#endif

If you plan to use multiline macros, make sure you use the Unix end-of-line character (LF). You may use the

fixerlf Ant task to automatically fix that for you.

WERARIT AL 2 AT, ORI T Unix MATEARAT (LF) o ARWTH] Ant fE5% fixerlf A BEE
e

Another example, not strictly related to performance but demonstrating how powerful JavaScript
preprocessing can be, is the use of "variadic macros" (macros accepting a variable number of arguments) and file

inclusion to implement JavaScript assertions. Consider the following file named include.js:

T, AKEHE, {HEE T JavaScript TR TERT VL AR, B TS EHE” R
BRI ZHD S, LASEH JavaScript B . %5 R F XA include.js SCHF:

#ifndef INCLUDE JS

#define INCLUDE JS

#ifdef DEBUG
function assert(condition, message) {
// Handle the assertion by displaying an alert message

// possibly containing a stack trace for example.

H
#define ASSERT(x, ...) assert(x, ## VA ARGS)

#else
#define ASSERT(x, ...)

#endif

#endif

You can now write JavaScript code that looks like the following:

BAEAR AT MR T X FE S JavaScript 408 :

#include "include.js"

function myFunction(arg) {

ASSERT(YAHOO.lang.isString(argvar), "arg should be a string");

#ifdef DEBUG
YAHOO.log("Log this in debug mode only");

#endif

-

The assertion and the extra logging code appear only when the DEBUG macro is set during development.

These statements disappear in the final production build.

tr = AN A A B AR U IR AR I FR B (Y DEBUG ZiBRrh e JX 2876 R 2 TR S 7= it

JavaScript Minification JavaScript &

JavaScript minification is the process by which a JavaScript file is stripped of everything that does not
contribute to its execution. This includes comments and unnecessary whitespace. The process typically reduces
the file size by half, resulting in faster downloads, and encourages programmers to write better, more extensive

inline documentation.

JavaScript B & HEHZ AR —> JavaScript AFH— VAT RN AR . WIERMA L Z 02 .
AR TR SO R kB, HEE RO N BOEEER, JF SR 7 R A, SETRAR N P IR L
=R

JSMin (http://www.crockford.com/javascript/jsmin.html), developed by Douglas Crockford, remained the
standard in JavaScript minification for a long time. However, as web applications kept growing in size and
complexity, many felt it was time to push JavaScript minification a step further. This is the main reason behind
the development of the YUI Compressor (http://developer.yahoo.com/yui/compressor/), a tool that performs all
kinds of smart operations in order to offer a higher level of compaction than other tools in a completely safe way.

In addition to stripping comments and unnecessary whitespace, the YUI Compressor offers the following features:

JSMin Chttp://www.crockford.com/javascript/jsmin.html) , [Douglas Crockford Jf 4, T #%E T JavaQerint

SRR — B A] o SR B 0 2% B RS e e BT 2 2P E AN I, V22 NAK JavaScrip

R P AUHEE— 20 . KR IT R YUI IR 4ids i) £ 227 A Chttp:/developer.yahoo.com/yui/compressor/) ‘42
BT T A R ERAE, O T IRBE LS TR S) BRI B U 2 Tk SE . B T 5B
R DLER T, YUL K45 a5 bt LU R Dy gE:

* Replacement of local variable names with shorter (one-, two-, or three-character) variable names, picked to

optimize gzip compression downstream

KRR BB LR RIE (1A, 24, S3 NP, DMK SRR gzip 45 TAF

* Replacement of bracket notation with dot notation whenever possible

(e.g., foo["bar'"] becomes foo.bar)

AT RERE 5 S R AT RO R RT (91 foo:["bar"14Z A foo.bar)

* Replacement of quoted literal property names whenever possible

(e.g., {"foo":"bar"} becomes {foo:"bar"})

Rfge s s HEEREMES (W { foo":"bar"} 42 % { foo:"bar"})

* Replacement of escaped quotes in strings (e.g., 'aaa\'bbb' becomes "aaa'bbb")

Bl 20 s ep RS X515 (9] fiT'aaa\ bbb s F"ana'bbb")

* Constant folding (e.g., "foo'"+"bar" becomes "foobar')

HEES (" foo"+"bar" A ik "foobar")

Running your JavaScript code through the Y UI Compressor results in tremendous savings compared to JSMin
without any further action. Consider the following numbers on the core files of the YUI library (version 2.7.0,

available at http://developer.yahoo.com/yui/):

5 JSMin HHEL, JEIE YUI R4 28T T #8019 JavaScript SIS M TH R 2 #4E. THMEFLE
FEMIAZ MRS (2.7.0 fit, "F#dthE: http:/developer.yahoo.com/yui/) :

Raw yahoo.js, dom.js and event.js 192,164 bytes
yahoo.js, dom.js and event.js + JSMin 47,316 bytes

yahoo.js, dom.js and event.js + YUI Compressor 35,896 bytes

In this example, the YUI Compressor offers 24% savings out of the box compared to JSMin. However, there
are things you can do to increase the byte savings even further. Storing local references to objects/values,
wrapping code in a closure, using constants for repeated values, and avoiding eval (and its relatives, the Function
constructor, setTimeout, and setInterval when used with a string literal as the first argument), the with keyword,
and JScript conditional comments all contribute to making the minified file smaller. Consider the following

function, designed to toggle the selected class on the specified DOM element (220 bytes):

TR T, YU R46 485 ISMin AHELT4S T 24%8 0. SR, AROERTLAEE— 5354 A0 . 6 R0
SIURAARETER S MBS, AR RN, AW EFNAESME, #4% eval (LLZARLIK Function & 2%,
setTimeout F setInterval {ff I 775 HHEEEAE N H—AZ40 . with X¥ES, IScript ZAHERE, HAAHIT
BE— BRGSO IR IR, FIREAHRr 52 DOM JTE H selected 28 (220 “F741) -

function toggle (element) {
if (YAHOO.util.Dom.hasClass(element, "selected")){
YAHOO.util. Dom.removeClass(element, "selected");
} else {
YAHOO.util.Dom.addClass(element, "selected");

}

The YUI Compressor will transform this code into the following (147 bytes):

YUI EZas 8 AR e an ™ (147 2797) -

function
toggle(a) {if(YAHOO.util. Dom.hasClass(a,"selected")) { YAHOO.util. Dom.removeClass(a,"selected") }else { YAH

0O.util.Dom.addClass(a,"selected")} };

If you refactor the original version by storing a local reference to YAHOO.util.Dom and using a constant for

the "selected" value, the code becomes (232 bytes):

WRPREM RG0S, % YAHOO.util. Dom /2 AN —NREE5I A, J58 A EA7 T select"(H, R A%
WFRIRET (232 FH) .

function toggle (element) {
var YUD = YAHOO.util.Dom, className = "selected";
if (YUD.hasClass(element, className)){
YUD.removeClass(element, className);
} else {

YUD.addClass(element, className);

}

This version shows even greater savings after minification using the YUI Compressor (115 bytes):

ARSI YUT B8 s8R R AN 2 S5 ABSE N (115 FH) .

function toggle(a) {var

c=YAHOO.util.Dom,b="selected";if(c.hasClass(a,b)){c.removeClass(a,b)}else{c.addClass(a,b)} };

The compaction ratio went from 33% to 48%, which is a staggering result given the small amount of work
needed. However, it is important to note that gzip compression, happening downstream, may yield conflicting
results; in other words, the smallest minified file may not always give the smallest gzipped file. That strange result
is a direct consequence of lowering the amount of redundancy in the original file. In addition, this kind of
microoptimization incurs a small runtime cost because variables are now used in place of literal values, thus
requiring additional lookups. Therefore, I usually recommend not abusing these techniques, although it may still
be worth considering them when serving content to user agents that don't support (or advertise their support for)

gzip compression.

JEAEZR N 33%A8 N 48%, R EDETMAEIRARKSIR. R, EERIEEN gzip K48, RS
PR R YA R o TR, BRSO IR AN B 4 BN gzip HR A ST o IR R A SR BRI
JESCAFRI O B o ISk, XSO S 2 T — MR/ T, POVER RN T HEE,
PTLAT AN AT 4R . BRI, TR R IO SEE X BOR, SR IR 55 & 20 P AR ARy (A RS
£ gzip LA, EATERERHERER.

In November 2009, Google released an even more advanced minification tool called the Closure Compiler
(http://code.google.com/closure/compiler/). This new tool goes further than the YUI Compressor when using its
advanced optimizations option. In this mode, the Closure Compiler is extremely aggressive in the ways that it
transforms code and renames symbols. Although it yields incredible savings, it requires the developer to be very
careful and to ensure that the output code works the same way as the input code. It also makes debugging more
difficult because almost all of the symbols are renamed. The Closure library does come with a Firebug extension,
named the
Closure Inspector (http://code.google.com/closure/compiler/docs/inspector.html), that provides a mapping
between the obfuscated symbols and the original symbols. Nevertheless, this extension is not available on
browsers other than Firefox, which may be a problem when debugging browser-specific code paths, and

debugging still remains harder than with other, less aggressive minification tools.

2009 4 11 1, Google JAfi T —NFEJEHER) 5% T H 014 P48 http://code.google.com/closure/compiler/
R T H B YUI IRgaas Edk—20, 440 ISR IR I o 7 AR, P gmictas LUK i 86 1 1 7
AU B BT 54 . BARE A THELLEER RSG5, (eI R E W EEE /O LU Cf 4 B AR
SRS ER R A WA, B JLP AR 588 e 7. A ELL—> Firebug 9
JER kAT, s W EEEESS (Closure Inspector)
(http://code.google.com/closure/compiler/docs/inspector.html), JFHEHE T — M4 5 755 4 A5 BHFT 5 44 2]
I RER . AL, XA BB T Firefox ZAMIIINEAS, T LA 8 p0) Va2 AH O (14 QR ST 158 A2 A fm] 51,
M B AR AN 2, 85 T8 (1) g THARE, RS AR E A

Buildtime Versus Runtime Build Processes FF/& i3 2 KI4R R Az 4T Bt

Concatenation, preprocessing, and minification are steps that can take place either at buildtime or at run

Runtime build processes are very useful during development, but generally are not recommended in a prodt

environment for scalability reasons. As a general rule for building high-performance applications, everything that

can be done at buildtime should not be done at runtime.

B, PR, FEGREREAT DR N R, AT DAFEIBAT I R A AR A R A, BTN B i R
WA, ERT RERE SR S PR SRR AR P — SR e, R
REWS TR 1IN SE) TAF, A EAEIEAT I A

Whereas Apache Ant is definitely an offline build program, the agile build tool presented toward the end of
this chapter represents a middle ground whereby the same tool can be used during development and to create the

final assets that will be used in a production environment.

Apache Ant JoHESE — M HLIT AL, 1A AR LI R TG A THRACER 1 pial ik, AR TR
WP R B R WS, WA T A

JavaScript Compression JavaScript K48

When a web browser requests a resource, it usually sends an Accept-Encoding HTTP header (starting with
HTTP/1.1) to let the web server know what kinds of encoding transformations it supports. This information is
primarily used to allow a document to be compressed, enabling faster downloads and therefore a better user
experience. Possible values for the Accept-Encoding value tokens include: gzip, compress, deflate, and identity

(these values are registered by the Internet Assigned Numbers Authority, or [ANA).

P GO B A T SR AN RPE R, B iE > Accept-Encoding) HTTP 3k (LA HTTP/1.1 FF4H) ikM
DUIRSS w3 B AR T LR M gmis 28 . (5 B R EEH T v SO R 4 LIRS BB M 208 AL, T el A -
&% . Accept-Encoding FIHUEYEF A& : gzip, compress, deflate, #identity (IXEE{H B8 7E LK Mt 7>

LR CHUTANADY M)

If the web server sees this header in the request, it will choose the most appropriate encoding method and

notify the web browser of its decision via the Content-Encoding HTTP header.

Gn SR TR 55 2SR IR SR AR SRR BIREEE Bk, ek E Y Ym S 7%, FFEId Content-Encoding)
HTTP JmAn o ss .

gzip is by far the most popular encoding. It generally reduces the size of the payload by 70%, making it a
weapon of choice for improving the performance of a web application. Note that gzip compression should be used
primarily on text responses, including JavaScript files. Other file types, such as images or PDF files, should not be

gzipped, because they are already compressed and trying to compress them again is a waste of server resources.

gzip KM H AT SRURAT RO S A% 3o & W AT R el 1) 70%, A B i 19 TR I RE R A 7 i
o VEE gzip IRAE#S FEH T SCAMRIC, 345 JavaScript SCfFe HABSCHE2ERL, Wil o PDF SCfF, AN
AL gzip J48, DU ENICZ R4, wRE BRI A8 R SRR S s BE .

If you use the Apache web server (by far the most popular), enabling gzip compression requires installing and
configuring either the mod_gzip module (for Apache 1.3 and available at

http://www.schroepl.net/projekte/mod_gzip/) or the mod_deflate module (for Apache 2).

BT H Apache W TR 4% (HBTSRIATIND , JAH gzip R4 ThRE TR B L EEIFACE mod _gzip BEEL

CEF X} Apache 1.3, i T http://www.schroepl.net/projekte/mod _gzip/)5k # mod deflate #EE (£ X} Apache 2).

Recent studies done independently by Yahoo! Search and Google have shown that roughly 15% of the content
delivered by large websites in the United States is served uncompressed. This is mostly due to a missing
Accept-Encoding HTTP header in the request, stripped by some corporate proxies, firewalls, or even PC security
software. Although gzip compression is an amazing tool for web developers, one must be mindful of this fact and
strive to write code as concisely as possible. Another technique is to serve alternate JavaScript content to users
who are not going to benefit from gzip compression but could benefit from a lighter experience (although users

should be given the choice to switch back to the full version).

H1 Yahoo! 5 A1 Google J 37 58 B BT 7R 1, 56 B I W sl 4R A1 P 2 R AT K20 15% R I 46
KZ B A TE I KRS ED> Accept-Encoding ff) HTTP sk, ‘B#—26 A w03, B ki, H% PC 4K
TRIRR 7o B gzip A8 — MR AR IOT R TR, B2 EEEREAFE, REBSHERE.
T3 AP AU JavaScript W7, EASEEANGEZ 2R T gzip AT, T UG SE a7 B P 4
% R AT L PED R 2R A ©

To that effect, it is worth mentioning Packer (http://dean.edwards.name/packer/), a JavaScript minifier
developed by Dean Edwards. Packer is able to shrink JavaScript files beyond what the YUI Compressor can do.

Consider the following results on the jQuery library (version 1.3.2, available at http://www.jquery.com/):

A, {HASHEF)] Packer (http://dean.edwards.name/packer/), i Dean Edwards JT & Ff]—™ JavaScript 5%
T H.. Packer X} JavaScript [k 4d G088 YU FR4E 45 KT 5 RN AT jQuery FERIEAE 453 (A 1.3.2,
THEObE http:/www.jquery.com/) :

jQuery 120,180 bytes
jQuery + YUI Compressor 56,814 bytes
jQuery + Packer 39,351 bytes

Raw jQuery + gzip 34,987 bytes

jQuery + YUI Compressor + gzip 19,457 bytes

jQuery + Packer + gzip 19,228 bytes

After gzipping, running the jQuery library through Packer or the YUI Compressor yields very similar results.
However, files compressed using Packer incur a fixed runtime cost (about 200 to 300 milliseconds on my modern
laptop). Therefore, using the YUI Compressor in combination with gzipping always gives the best results.
However, Packer can be used with some success for users on slow lines that don't support gzip compression, for
whom the cost of unpacking is negligible compared to the cost of downloading large amounts of code. The only

downside to serving different JavaScript content to different users is increased QA costs.

23 gzip K462)5, jQuery EZEIE Packer BY YUI JE 4 ds £ R Z RAFE ML 2810, A Packer J144
A S EANEE AT AU (RN R I A N K212 200 £ 300 210D o DL, A
YUI JR46 2580 gzip 44w ess R E4E B SRTM, Packer W T-HAN i B AN SCRF gzip R48 115 0L,
R IE SRR 5 T BORE AR AT LA 23 . I ANF 7 S AR JavaScript AOME— Gk U2 T2 R
UERSCAS A T

Caching JavaScript Files 2277 JavaScript 3CfF

Making HTTP components cacheable will greatly improve the experience of repeat visitors to your web

As a concrete example, loading the Yahoo! home page (http://www.yahoo.com/) with a full cache requires ¢

fewer HTTP requests and 83% fewer bytes to download than with an empty cache. The round-trip time (the
elapsed time between the moment a page is requested and the firing of the onload event) goes from 2.4 seconds to
0.9 seconds (http://yuiblog.com/blog/2007/01/04/performance-research-part-2/). Although caching is most often

used on images, it should be used on all static components, including JavaScript files.

A6 HTTP LA FFT A7 4 KRR i L BRI 1 R Sl B 0 P 448 . — S BRI T2, I Yahoo! 3=
TUHE Chttp://www.yahoo.com/) , FIA{f FEAEALL, A FZEAFH38D 90% 1) HTTP iR A 83%K F T
Mo FLIRITTE] CANIE SR U 46 258 — K onload F4F) M 2.4 # N F%] 0.9 ¥
(http://yuiblog.com/blog/2007/01/04/performance-research-part-2/). HL5K K A £ AT 847, AHE N 4946
TERTA B AP 25 1, L4 JavaScript U«

Web servers use the Expires HTTP response header to let clients know how long a resource can be cached.
The format is an absolute timestamp in RFC 1123 format. An example of its use is: Expires: Thu, 01 Dec 1994
16:00:00 GMT. To mark a response as "never expires," a web server sends an Expires date approximately one
year in the future from the time at which the response is sent. Web servers should never send Expires dates more

than one year in the future according to the HTTP 1.1 RFC (RFC 2616, section 14.21).

P TR 5% 454 FH Expires Wi SR SC HTTP Sk ik /= 3 AT 2 A7 SR AN TR) . ¢ 02—~ RFC 1123 #5201
Z4 XTI ()8 140: Expires: Thu, 01 Dec 1994 16:00:00 GMT. B0 N AR SChRic <A1, ® TR
G523] LU —ANIN TR A 1 SR IS I 2 J5 — 52 1Y) Expires (4. R4 HTTP 1.1 RFC (RFC 2616, 14.21 71)
(BRI TR 5% 2% 1) Expires B[R] R BRI —4E

If you use the Apache web server, the ExpiresDefault directive allows you to set an expiration date relative to

the current date. The following example applies this directive to images, JavaScript files, and CSS stylesheets:

R IRflH Apache W TR 454+, ExpiresDefault £i54 ST /RHRYE 24 57 i[RI B0 E L IS TR] .) TR 8 5 4%
Mie4 T E A, JavaScript X, F1 CSS #EFE:

<FilesMatch "\.(jpg|jpeg|png|gif]js|css|htm|html)$">
ExpiresActive on
ExpiresDefault "access plus 1 year"

</FilesMatch>

Some web browsers, especially when running on mobile devices, may have limited caching capabilities. For
example, the Safari web browser on the iPhone does not cache a component if its size is greater than 25KB
uncompressed (see http://yuiblog.com/blog/2008/02/06/iphone-cacheability/) or 15KB for the iPhone 3.0 OS. In
those cases, it is relevant to consider a trade-off between the number of HTTP components and their cacheability

by splitting them into smaller chunks.

FELE U b3 A%, Rl R ISR B v ek BRI BE RS, W REA AR 40, iPhone [¥) Safari ¥ WiAF A
BEZAF W)L 5 KT 25K II4L4E (L http://yuiblog.com/blog/2008/02/06/iphone-cacheability/) , 7% iPhone 3.0
BAERZ EABEAT 15K, 7EXMS I T, NATE HTTP AEECER NI vk, 25 R e 14 ik
RN HE- R

You can also consider using client-side storage mechanisms if they are available, in which case the JavaScript

code must itself handle the expiration.

WERFTREMIG, PRIETT LA B8 P i A- LT, ik JavaScript fUAS B SR A B 1.

Finally, another technique is the use of the HTML 5 offline application cache, implemented in Firefox 3.5,
Safari 4.0, and on the iPhone beginning with iPhone OS 2.1. This technology relies on a manifest file listing the
resources to be cached. The manifest file is declared by adding a manifest attribute to the <html> tag (note the

use of the HTML 5 DOCTYPE):

&G, A PR HTML 5 BN HRITEAE, ©OS7Em Tl s s Firefox 3.5, Safari
4.0, M iPhone OS 2.1 JFEHLASGHIMAS . IR T — NECE SO, A H WY S BB YH . IEALE
{438 1 <htmI>FRr %5 [¥) manifest @Y GF & E# H HTML 5 [DOCTYPE) :

<IDOCTYPE html>

<html manifest="demo.manifest">

The manifest file uses a special syntax to list offline resources and must be served using the
text/cache-manifest mime type. More information on offline web application caching can be found on the W3C

website at http://www.w3.org/TR/html5/offline.html.

WP E SO PR RE TR Y B 2k TR, 20 T text/cache-manifest 5 Y BRI EARAL, HE R T H

2R BT Y A7 15 B 2 I W3C 19I5 http://www.w3.org/TR/html5/offline.html.

Working Around Caching Issues %2277 | Bl

Adequate cache control can really enhance the user experience, but it has a downside: when revving up your
application, you want to make sure your users get the latest version of the static content. This is accomplished by

renaming static resources whenever they change.

AN FIMGAFE RN R ER &R, (HEf P BRI G, (R EZf R 52
FFAS A RO A o IR IE I et (i & R A T H A A% S

Most often, developers add a version or a build number to filenames. Others like to append a checksum.
Personally, I like to use a timestamp. This task can be automated using Ant. The following target takes care of

renaming JavaScript files by appending a timestamp in the form of yyyyMMddhhmm:

REZNGHT, JFRE WL TR — MRS BT R 7. B ABYEN—MREM. MATmE, &
A B, AT T A Ant HBh5ER. T TN H b8 B0 —4> yyyyMMddhhmm #% 25 B[R]
%44 JavaScript A

<target name="js.copy'>
<!-- Create the time stamp -->
<tstamp/>
<!-- Rename JavaScript files by appending a time stamp -->
<copy todir="$ {build.dir}">
<fileset dir="$ {src.dir}" includes="*.js"/>
<globmapper from="* js" to="*-$ {DSTAMP}${TSTAMP} .js"/>
</copy>

</target>

Using a Content Delivery Network {5 F P 284%3%

A content delivery network (CDN) is a network of computers distributed geographically across the Internet
that is responsible for delivering content to end users. The primary reasons for using a CDN are reliability,
scalability, and above all, performance. In fact, by serving content from the location closest to the user, CDNs are

able to dramatically decrease network latency.

WAAEIE L% (CDND 2% B 73 A7 v BRI &%, JE R DIOK R 553 1m) s 28 I 70 R 4. {1 CDN
MR P iR, wyEtt, (ERE R kR, FOE b, A E bR I AL [A IR IR
%, CDN] DI > 9 2% SiE IR

Some large companies maintain their own CDN, but it is generally cost effective to use a third-party CDN
provider such as Akamai Technologies (http://www.akamai.com/) or Limelight Networks

(http://www.limelightnetworks.com/).

—ER AT gEYENTH CK CDN, (EJEFAH S =7 CDN ELit—£8, W1 Akamai BH

(http://www.akamai.com) =¥ Limelight %% Chttp://www.limelightnetworkds.com) .

Switching to a CDN is usually a fairly simple code change and has the potential to dramatically improve

end-user response times.

DI 2] CDN B H R A BN, T e ORI B e 26 FH P i A T

It is worth noting that the most popular JavaScript libraries are all accessible via a CDN. For example, the
YUI library is served directly from the Yahoo! network (server name is yui.yahooapis.com, details available at
http://developer.yahoo.com/yui/articles/hosting/), and jQuery, Dojo, Prototype, Script.aculo.us, MooTools, Y UI,
and other libraries are all available directly via Google’s CDN (server name is ajax.googleapis.com, details

available at http://code.google.com/apis/ajaxlibs/).

{HEF R, BUATH JavaScript PEALA] LLEEE CDN 5. #l40, YUI B Yahoo! W44 3k15 (R
%454)& yui.yahooapis.com, http:/developer.yahoo.com/yui/articles/hosting/) . jQuery, Dojo, Prototype,
Script.aculo.us, MooTools, YUI, &4 HARZEH] LLE #2#1d Google ¥ CDN k1 (k%5484 2

ajax.googleapis.com, http://code.google.com/apis/ajaxlibs/) -

Deploying JavaScript Resources 3% JavaScript %R

The deployment of JavaScript resources usually amounts to copying files to one or several remote hosts, and
also sometimes to running a set of shell commands on those hosts, especially when using a CDN, to distribute the

newly added files across the delivery network.

Hi% JavaScript B3 JEUE 7 285 DO — e AN AL, AN FEASEE L I AT > shell i 24,
Fra) AL CDN I, S %38 M 2% 23 A soBrds ANk ST A

Apache Ant gives you several options to copy files to remote servers. You could use the copy task to copy
files to a locally mounted filesystem, or you could use the optional FTP or SCP tasks. My personal preference is
to go directly to using the scp utility, which is available on all major platforms. Here is a very simple example

demonstrating this:

Apache Ant 3L U LA ZEIT P T4 50 PE SIS RR IR 48 Lo IRTT LUBEFE copy AR50 S 151 —
A HI BRI SO A%, SR HH FTP 5% SCP T4, 8/ A XK B0 sop Tk, BMFFA 1T &4
SR AR R T

<apply executable="scp" fail parallel="true">
<fileset dir="${build.dir}" includes="* js"/>
<srcfile/>
<arg line="${live.server}:/var/www/html/"/>

</apply>

Finally, in order to execute shell commands on a remote host running the SSH daemon, you can use the
optional SSHEXEC task or simply invoke the ssh utility directly, as demonstrated in the following example, to

restart the Apache web server on a Unix host:

R%, 4 THEIRE N EI2T shell 454 Ja3h SSH s, AT LM SSHEXEC {55 1 15 s fa] Bt B 1%
WA ssh TR, TEW0 N B AKE, 7E Unix ML EFR Apache B 0T 55

<exec executable="ssh" fail>

<arg line="$ {live.server}"/>

<arg line="sudo service httpd restart"/>

</exec>

Agile JavaScript Build Process RI5[JavaScript 7 /& idF2

Traditional build tools are great, but most web developers find them very cumbersome because it is necessary
to manually compile the solution after every single code change. Instead, it's preferable to just have to refresh the
browser window and skip the compilation step altogether. As a consequence, few web developers use the
techniques outlined in this chapter, resulting in applications or websites that perform poorly. Thankfully, it is
fairly simple to write a tool that combines all these advanced techniques, allowing web developers to work

efficiently while still getting the most performance out of their application.

FRGETT R T RARGRK, (B R 2 B ST AN G ATTRRRNE, TN AR RS 2 2 S A 75 25T T 4w e R

o JTRANREEXN G —MIriE, Bl APl BRI SE 1. Rk, JLPEsamIiorE

B AT Z AN S U R 7 B i R B AV o 2 2 ere BRI TR A2 fa
E SRR TUT BB E N RE R L AN IR P RE -

smasher is a PHP5 application based on an internal tool used by Yahoo! Search. It combines multiple
JavaScript files, preprocesses them, and optionally minifies their content. It can be run from the command line, or
during development to handle web requests and automatically combine resources on the fly. The source code can

be found at http://github.com/jlecomte/smasher, and contains the following files:

smasher /£ —> PHP5 N AH2/¥, T Yahoof & {EHM— 1 WE TR, ©&IZ A JavaScript 31,
AL EA], ARSI AT BT BB A B B B A 21 s BT T RO R A B R T SRk
HE & PR JEIS AT {E http://github.com/jlecomte/smasher 4%, 1% LA S fF:

smasher.php

Core file 0ot

smasher.xml

Configuration file FC & {1

smasher

Command-line wrapper 41T 3%

smasher_web.php

Web server entry point [5Tz % A

smasher requires an XML configuration file containing the definition of the groups of files it will combine, as

well as some miscellaneous information about the system. Here is an example of what this file looks like:

smasher 7% —> XML FLE A& 25 FF SO RE S, S8 RR GG R . M2
SCAFRY 7

<?xml version="1.0" encoding="utf-8"?>

<smasher>
<temp_dir>/tmp/</temp_dir>
<root_dir>/home/jlecomte/smasher/files/</root dir>
<java_bin>/usr/bin/java</java_bin>

<yuicompressor>/home/jlecomte/smasher/yuicompressor-2-4-2 jar</yuicompressor>

<group id="yui-core">
<file type="css" src="reset.css" />

<file type="css" src="fonts.css" />

<file type="js" src="yahoo.js" />

<file type="js" src="dom.js" />

<file type="js" src="event.js" />

</group>

<group id="another-group">

<file type="js" src="foo.js" />

<file type="js" src="bar.js" />

<macro name="DEBUG" value="1" />

</group>

</smasher>

Each group element contains a set of JavaScript and/or CSS files. The root_dir top-level element contains the
path to the directory where these files can be found. Optionally, group elements can also contain a list of

preprocessing macro definitions.

F—> group JTTE A F—)> JavaScript 8 CSS SLAFEE A « 1% root_dir TH)JZ T3 A & & $RIX L8 S0 I R A

group JCE I ALE T IR G & — MU BZ 2 XK.

Once this configuration file has been saved, you can run smasher from the command line. If you run it
without any of the required parameters, it will display some usage information before exiting. The following

example shows how to combine, preprocess, and minify the core YUI JavaScript files:

— BIXAMECE S RAE TR, FRUA] BLTE Ar-&4T181T smasher. WERARAIMEM S 8z17E, BRHAER
2 AR s — A A AE B RIS TR S O, PARE, RIS YUI #%0 JavaScript S

$./smasher -¢ smasher.xml -g yui-core -t js

If all goes well, the output file can be found in the working directory, and is named after the group name
(yui-core in this example) followed by a timestamp and the appropriate file extension (e.g.,

yui-core-200907191539 js).

W —IER, aTLUE TAE B 83 H S0, era U2 Ik GXAMF 8 yui-core) J5 HIER
EH N TBRE M ISCH % (B, yui-core-200907191539.js) .

Similarly, you can use smasher to handle web requests during development by placing the file

smasher web.php somewhere under your web server document root and by using a URL similar to this one:

[EAE, VRa] UAE A smasher 75 T &2 30 FE HRAGEE R TTIE R, B SO smasher web.php JACZEARIIM BTN~
SR, A 2R RUX AR URL:

http://<host>/smasher web.php?conf=smasher.xml&group=yui-core&type=css&nominify

By using different URLs for your JavaScript and CSS assets during development and in production, it is now

possible to work efficiently while still getting the most performance out of the build process.

FETT RN A, N ARG JavaScript A1 CSS BHAE AR URL, BUEE T AFETT AL 8 2 A3 A5 4
(XA

Summary & 45

The build and deployment process can have a tremendous impact on the performance of a JavaScript-based

application. The most important steps in this process are:
TERMFE S FER T JavaScript N AR P AT LU AR EOR M, S i LA 3R

* Combining JavaScript files to reduce the number of HTTP requests

4 3F JavaScript U, 98> HTTP & KK E =
* Minifying JavaScript files using the YUI Compressor

T YUI R 45 4% 582 Ab 2 JavaScript SC2F
* Serving JavaScript files compressed (gzip encoding)

DU 46 2 3 JavaSeript XA (gzip Zfid)

» Making JavaScript files cacheable by setting the appropriate HTTP response headers and work around caching

issues by appending a timestamp to filenames
TR A HTTP W AR S AE JavaScript SCHFRT 9247, T8I) SCAA4 BRI IS T1) AP TR 2 A7) i

* Using a Content Delivery Network to serve JavaScript files; not only will a CDN improve performance, it

should also manage compression and caching for you

A ARG ML (CDND 424 JavaScript SCfF, CDN AMUATLASE ERE, e iT LK R4 P 46 Fn 28
17

All these steps should be automated using publicly available build tools such as Apache Ant or using a custom
build tool tailored to your specific needs. If you make the build process work for you, you will be able to greatly

improve the performance of web applications or websites that require large amounts of JavaScript code.

T IZEE D BN BB 5e e, AERAEH AT TR TR Apache Ant, IERAEH B E XHITT R TH
PSR B 7 Ko W RRAER EE T R T HOA RIS, AR AT LARROK B i 22 K& A A JavaScript AUAS) 199 5T
O FE R s) 1

®1+EZ Tools TEH

Having the right software is essential for identifying bottlenecks in both the loading and running of scripts. A
number of browser vendors and large-scale websites have shared techniques and tools to help make the Web

faster and more efficient. This chapter focuses on some of the free tools available for:

AR E A INENIEAT I RS e N, & TR T RAZ DA, V2R as) mA R Mt 7 1
—EERRMN TR, FBYIT A AR TUER, R . AERIE T IR T A

Profiling 887347
Timing various functions and operations during script execution to identify areas for optimization
FERIAIZAT WE AT AN F R O3, $R 1 F 203

Network analysis % %% 5311

Examining the loading of images, stylesheets, and scripts and their effect on overall page load and rendering
Ay, FEER, MBAH B A, JEHRCE AT TR A S I EoNIE B 50

When a particular script or application is performing less than optimally, a profiler can help prioritize ar

optimization. This can get tricky because of the range of supported browsers, but many vendors now provid

profiler along with their debugging tools. In some cases, performance issues may be specific to a particular
browser; other times, the symptoms may occur across multiple browsers. Keep in mind that the optimizations
applied to one browser might benefit other browsers, but they might have the opposite effect as well. Rather than
assuming which functions or operations are slow, profilers ensure that optimization time is spent on the slowest

areas of the system that affect the most browsers.

2 ANRESE B BIA BN R e AT iR B B RS I, — MPERE e WS A7 B T2 A TAR IR e 5
AL, DRSS SCRFRIVEE AR, X AT REAARARRRAE, (BVF2) RIAEMRA T IR T R et IR RE I
o ATLENEOLT, PERERE AT BE P ER AT %, AR OL R, XK RE IR 2 M baAs . TSI
£, g EATEAT RO AT BEE A T AR S g, T BE P AR SRR o ERE T TR AR
WIAFAERAE R G A, MK 2 B WS ROy, AN 23R8 A0 L o S el A 2218

While the bulk of this chapter focuses on profiling tools, network analyzers can be highly effective in helping
to ensure that scripts and pages are loading and running as quickly as possible. Before diving into tweaking code,
you should be sure that all scripts and other assets are being loaded optimally. Image and stylesheet loading can
affect the loading of scripts, depending on how many concurrent requests the browser allows and how many assets

are being loaded.

BRATRZHARE TR TR, HSERZ8 i T HAT LA OR 20 SRR, LB GRS 5T
TR AT BE SR AN BEEAT . FERBEACRE 2 AT, SNz IR IAS R A B R indod i c e fideid 1. AN
FERR IS M BEA N, KHR T s o 20 RIER, A 2SR 2.

Some of these tools provide tips on how to improve the performance of web pages. Keep in mind that the best
way to interpret the information these tools provide is to learn more about the rationale behind the rules. As with

most rules, there are exceptions, and a deeper understanding of the rules allows you to know when to break them.

R T Bt 7 OuAe vk ERIRR . EICAE, BRI RS T ARG R, HHE
RN TR S Bl . R RZEON 4, BRI, RN AR S UM 15 5 Jnii
PABDUT R4 TR -

JavaScript Profiling JavaScript 8847

The tool that comes with all JavaScript implementations is the language itself. Using the Date object, a
measurement can be taken at any given point in a script. Before other tools existed, this was a common way to
time script execution, and it is still occasionally useful. By default the Date object returns the current time, and
subtracting one Date instance from another gives the elapsed time in milliseconds. Consider the following
example, which compares creating elements from scratch with cloning from an existing element (see Chapter 3,

DOM Scripting):

T H5HT JavaScript SEBI S AEESK, EEIES HS . MM Data X ST LU ERIA KRR 72. £3H
W LRI AT, WA A AT I (8] 2 —Fl H T B AR s AN I 21 o 18548 Data 3% 8] 24 A A,
IRJIE 12 7 Data (H LA 2| AR 4 A7 AU (R 2. 58 M Iel 1, BRI ciE M wE LAt
RATHIKI TR (Z W5 =%, DOM %ifs) -

var start = new Date(),
count = 10000,

1, clement, time;

for (i=0; 1 < count; i++) {

element = document.createElement ('div');

time = new Date() - start;

alert('created ' + count +'in "' + time + 'ms');

start = new Date();
for (i=0, 1 < count; i++) {

element = element.cloneNode(false);

time = new Date() - start;

alert('created ' + count +'in ' + time + 'ms');

This type of profiling is cumbersome to implement, as it requires manually instrumenting your own timing

code. A Timer object that handles the time calculations and stores the data would be a good next step.

HERPEBE B+ BB, R E T IR IE N4 . AT 5E A Timer A 5 AP IR 8] THE A7 IR0 22
N R R A

Var Timer = {

_data: {},

start: function(key) {

Timer. data[key] = new Date();

I8

stop: function(key) {
var time = Timer. data[key];
if (time) {
Timer. data[key] = new Date() - time;
}
s

getTime: function(key) {
return Timer. data[key];
§
s

Timer.start('createElement’);
for (i=0; 1 < count; i++) {

element = document.createElement ('div');

-

Timer.stop('createElement');

alert('created ' + count +"'in ' + Timer.getTime('createElement');

As you can see, this still requires manual instrumentation, but provides a pattern for building a pure JavaScript
profiler. By extending the Timer object concept, a profiler can be constructed that registers functions and

instruments them with timing code.

IEWRERIR, XA R 2T T i, (B3t M@l JavaScript PERE ST AR, THLS”
J& Timer PGB, —AEBE M TR AT EAFEMXE N M ef O FAE o AR s A el T

YUI Profiler YUI Z3¥738

The YUI Profiler (http://developer.yahoo.com/yui/profiler/), contributed by Nicholas Zakas, is a JavaScript
profiler written in JavaScript. In addition to timer functionality, it provides interfaces for profiling functions,
objects, and constructors, as well as detailed reports of the profile data. It enables profiling across various

browsers and data exporting for more robust reporting and analysis.

YUI 75 #7145 Chttp://developer.yahoo.com/yui/profiler/) , Hi Nicholas Zakas $#&{ft, J&H JavaScript 45]
JavaScript 73T #% . FR T iFESDhRE, BOIRIRME T H TREL. XI5, MMrESsrvae i o, e
ST B ITE RS o e T DRSS T, Hofa 2 T SR A BE SR ORI AR S AT

The YUI Profiler provides a generic timer that collects performance data. Profiler provides static methods for

starting and stopping named timings and retrieving profile data.

YUI 7 Mrasde it — @ ADE I ds TR IERE SR . Profiler 1R {1t —LEF &4, AT RS
SEMTAS, DL IREUE GEEE -

var count = 10000, i, element;

Y.Profiler.start('createElement');

for (i=0; 1 < count; i++) {

element = document.createElement ('div');

Y.Profiler.stop('createElement’);

alert('created ' + count +"'in ' + Y.Profiler.getAverage('createElement') + 'ms');

This clearly improves upon the inline Date and Timer approach and provides additional profile data regarding
the number of times called, as well as the average, minimum, and maximum times. This data is collected and can

be analyzed alongside other profile results.

REE, ekt WK Data M1 Timer 3%, $RAESMOIERESDE QGRS ~FRImHE], /N rfTE),
BRI A5 SR LR LBkt SR T LS A A R 25 73 A o

Functions can be registered for profiling as well. The registered function is instrumented with code that
collects performance data. For example, to profile the global initUI method from Chapter 2, all that is required is

the name:

PREC T R R 28— o YRR B A SR RE R RO ARSI . B, i o R B A2)S
initUT J57%, U ZEAENER S T

Y .Profiler.registerFunction("initUI");

Many functions are bound to objects in order to prevent pollution of the global namespace. Object methods can
be registered by passing the object in as the second argument to registerFunction. For example, assume an object
called uiTest that implements two initUI approaches as uiTest.testl and uiTest.test2. Each can be registered

individually:

W RECE S NG5 E R, LApibys 2 R & i . W57 T BUE T reguisterFunction 7, R
BT GAE R R AN B, B PRAE uiTest RIXTGEEIE T N J57%, 73508 uiTest.testl

uiTest.test2, B J7VEARAT LAAL T

Y .Profiler.registerFunction("test1", uiTest);

Y .Profiler.registerFunction("test2", uiTest);

This works well enough, but doesn't really scale for profiling many functions or an entire application. The

registerObject method automatically registers every method bound to the object:

—UIEH, (B ANRER N E 2 A o8 B N FEP . registerObject J5i2 H 2 EMERE 20 5 (16

Y .Profiler.registerObject("uiTest", uiTest);

The first argument is the name of the object (for reporting purposes), and the second is the object itself. This

will instrument profiling for all of the uiTest methods.

BANSHENGRLY HTHRE) . BoASHENZEAE . ©H 31T viTest KIITHA 775,

Objects that rely on prototype inheritance need special handling. YUI's profiler allows the registration of a

constructor function that will instrument all methods on all instances of the object:

HSLE N SR ZR AN B 5 B PR AL B . YUT M R Se VA G e R K, & mT LI N 5 1) B A3 s 1)
TR Tk

Y .Profiler.registerConstructor("MyWidget", myNameSpace);

Now every function on each instance of myNameSpace.MyWidget will be measured and reported on. An

individual report can be retrieved as an object:

ULE, BT myNameSpace. MyWidget SE41 F451> bR 2K B = 1 AR o — MO IR & AT 53R
XFGIARFE R«

var initUIReport = Y.Profiler.getReport("initUI");

This provides an object containing the profile data, including an array of points, which are the timings for each
call, in the order they were called. These points can be plotted and analyzed in other interesting ways to examine

the variations in time. This object has the following fields:

R 2 — M E R S, S0 S > R R e, e HE SRR I Ao XL
[A] T P T B T ARG AT 208, U IR B2t IS SR 7B

{
min: 100,
max: 250,
calls: 5,
avg: 120,

points: [100, 200, 250, 110, 100]

55

Sometimes you may want only the value of a particular field. Static Profiler methods provide discrete data per

function or method:
HiHE A SO0 s B, B4 Profiler 7542 {45 iR Bl 7 1 10 2 B B0E -

var uiTest] Report = {
calls: Y.Profiler.getCalls("uiTest.test1"),

avg: Y.Profiler.getAvg("uiTest.test]")

55

A view that highlights the slowest areas of the code is really what is needed in order to properly analyze a

script's performance. A report of all registered functions called on the object or constructor is also available:

— L o AR R R B AR), R IER E A TERE R T . S A — A ThRE AT IR
X G B it s TR P IR BT AT S AT e B

var uiTestReport = Y.Profiler.getReport("uiTest");

This returns an object with the following data:

IR B RS Hdfs

{

testl: {
min: 100,
max: 250,
calls: 10,
avg: 120
s

test2:
min: 80,
max: 210,
calls: 10,
avg: 90

§

s

This provides the opportunity to sort and view the data in more meaningful ways, allowing the slower areas of
the code to be scrutinized more closely. A full report of all of the current profile data can also be generated. This,
however, may contain useless information, such as functions that were called zero times or that are already
meeting performance expectations. In order to minimize this type of noise, an optional function can be passed in

to filter the data:

AT PLHER BRI AT X RS B, AR 8 i /08 2 s IR o R4 Ty 20
P8R e B 2B S EMER, WU ECY T (e B, B 8L fE C 2t BT R A7
IR NBEIIRLET I, AT AN IE e HOoRod PR S8 4 -

var fullReport = Y.Profiler.getFullReport(function(data) {

return (data.calls > 0 && data.avg > 5);

55

The Boolean value returned will indicate whether the function should be included in the report, allowing the

less interesting data to be suppressed.
FAR [P AR KB T 48 AR EUR A N A B B 2 i, T AN BOGHER 1) B g

When finished profiling, functions, objects, and constructors can be unregistered individually, clearing the

profile data:
AOMEEUE, R, XNR, AN G AER, HE R

Y .Profiler.unregisterFunction("initUI");
Y .Profiler.unregisterObject("uiTests");

Y .Profiler.unregisterConstructor("MyWidget");

The clear() method keeps the current profile registry but clears the associated data. This function can be called

individually per function or timing:
clear() 5 VAR E L AT M HAREENPIRE, ABTEBRAROCHS - e e 0nT 7555 of sl i o g
Y .Profiler.clear("initUI");
Or all data may be cleared at once by omitting the name argument:
WRAMESHL, AT OB IR B
Y .Profiler.clear();

Because it is in JSON format, the profile report data can be viewed in any number of ways. The simplest way

to view it is on a web page by outputting as HTML. It can also be sent to a server, where it can be stored in =

database for more robust reporting. This is especially useful when comparing various optimization techniques

across browsers.

P EAE] ISON #630, Fr LAk iS5G 2 MEER E. R IINERUSTE M 5T B H oy HTML. it
FTLUR & RIE RIS a8, AR, DUSEBLE SRR S DhBe o e ol 2 ELESANR] (35 30 5t s DL AL BRI
AT o

It is worth noting that anonymous functions are especially troublesome for this type of profiler because there
is no name to report with. The YUI Profiler provides a mechanism for instrumenting anonymous functions,
allowing them to be profiled. Registering an anonymous function returns a wrapper function that can be called

instead of the anonymous function:

WA AELARECEEUDT T, POVEANTRA ST YUL 0 HrdsdR it 17— B 4 s Brap),
AR ENTRT A o FEM— N H A% s H ik Al EP e e B, mT LA AT e i AN 2 1 P e 42 pR

var instrumentedFunction =
Y .Profiler.instrument("anonymous1", function(numl, num2){

return numl + num?2;
§);

instrumentedFunction(3, 5);

This adds the data for the anonymous function to the Profiler's result set, allowing it to be retrieved in the same

manner as other profile data:

O B A R U E AN 2 Profiler (IR [BIEE A, SRECE AT 3L HoAth A oA) -

var report = Y.Profiler.getReport("anonymous1");

Anonymous Functions B 42 BR%(

Depending on the profiler, some data can be obscured by the use of anonymous functions or function
assignments. As this is a common pattern in JavaScript, many of the functions being profiled may be anony:

making it difficult or impossible to measure and analyze. The best way to enable profiling of anonymous

functions is to name them. Using pointers to object methods rather than closures will allow the broadest possible

profile coverage.

A8 P P 42 B8 B0 R B L 2 T 3 o RO B AR . F T3 2 JavaScript B, W2 B0 TR ER
T Re AL 1, e AT AN W AR R HEBUR A TCIE A T o W B A4 R U e R B R R B AT 42 7
A RS FR IR SO AR A, AT AR 2 1 0 A i .

Compare using an inline function:
PLAC A i, Ferp AN P bR £

myNode.onclick = function() {

myApp.loadData();

with a method call:
F—MER TR A

myApp._onClick = function() {
myApp.loadData();

¥

myNode.onclick = myApp. onClick;

Using the method call allows any of the reviewed profilers to automatically instrument the onclick handler.

This is not always practical, as it may require significant refactoring in order to enable profiling.

A8t o 5 T et (e i 20 A 4% B3 onclick B IXANSUE — A SERTHI5E, DA E W RERR ZEXT
AR BT KB

For profilers that automatically instrument anonymous functions, adding an inline name makes the reports

more readable:

Tk s Bes B sl B A2 s G Wi —> IR AL BRI o ST 132

myNode.onclick = function myNodeClickHandler() {

myApp.loadData();

This also works with functions declared as variables, which some profilers have trouble gleaning a name from:

AR E O AR B I WA A 7%, A S s 7R SR B BRI 2 1 2 BRI -

var onClick = function myNodeClickHandler() {

myApp.loadData();

The anonymous function is now named, providing most profilers with something meaningful to display along
with the profile results. These names require little effort to implement, and can even be inserted automatically as

part of a debug build process.

Ik & R BCAER a4 15 AR Z B s 0 A 8 R Bos AT R I . IR a4 AR L P AN %
B TAFE, T BT TR I TR B3 .

Firebug

Firefox is a popular browser with developers, partially due to the Firebug addon (available at
http://www.getfirebug.com/), which was developed initially by Joe Hewitt and is now maintained by the Mozilla
Foundation. This tool has increased the productivity of web developers worldwide by providing insights into code

that were never before possible.

P RN TR, Firefox & — M ERN AT, #5703 E Firebug #fiff Chttp://www.getfirebug.com/)
1 Joe Hewitt & @IL7E i Mozilla & o4id . b THEARPARARAMITES), 25 Tt 7 Wif
KBTS o

Firebug provides a console for logging output, a traversable DOM tree of the current page, style information,

the ability to introspect DOM and JavaScript objects, and more. It also includes a profiler and network analy

which will be the focus of this section. Firebug is also highly extensible, enabling custom panels to be easily

added.

Firebug f2fft 7 — M= & H B, 2457 ii K DOM W 2oR, FExUE 8, Bl S DOM 1 JavaScript
W5, LU Z DR B OE —MERMME Hrds, ZKEAVIIE L. Firebug & T4 &, "WHNEE
SCHIA o

Console Panel Profiler 556 R 17 5%

The Firebug Profiler is available as part of the Console panel (see Figure 10-1). It measures and reports on the
execution of JavaScript on the page. The report details each function that is called while the profiler is running,

providing highly accurate performance data and valuable insights into what may be causing scripts to run slowly.

Firebug 73 M1 &5 2 5 & B K —36 20 Canld 10-1) o @& IR SUH 24T JavaScripte 473145
IBATI, R RA SR O T s B a0y, Rtk RERUE A R/ ThRE, (AT $RHA
RE S EMAIZ TR IR A .

z =]
F L T Console~ | HIML €55 Scripe DoM Nex Q & DHI
Clear Brotile |
- X Y ¥ :

Figure 10-1. FireBug Console panel

Kl 10-1 FireBug ##14 HIMR

One way to run a profile is by clicking the Profile button, triggering the script, and clicking the Profile button
again to stop profiling. Figure 10-2 shows a typical report of the profile data. This includes Calls, the number of
times the function was called; Own Time, the time spent in the function itself; and Time, the overall time spent in
a function and any function it may have called. The profiling is instrumented at the browser chrome level, so there

is minimal overhead when profiling from the Console panel.

miii Profile ¥&HI AT BB A A #2, MURMIAS, PRk st Profile $&EH vl {51007, K1 10-2 Bon T —M

AR 7 A Edie 4055

b@jﬁ Calls:

BRHCE B Own Time:
HACTR R BIRIR], C 384 E R I e Z B e B i I TR B A
SRR B 70 PR RETT AR /N

HAE B iatT e
PERE 73 M AR 72 B W% 2

E/‘J HﬂL I\Eﬂ H Time:
JZRAL BT LS

Clins. | Profile

i'? el | Conzoie=

¥ Profilo (451.70%ms, 44063 calls)

WMl ©58 Acript

_ buncien | wmrm
B2 5 BEH 19, 106ms
Hid I5LI F31% 13,01 5mn
k3 1337 S.G6W I55EEm
WEY 143 373 16783nwe
ail, mmbedh | 1 JEIN 1633 0me
hiy 87 5.04% I3THEme
KLY 1092 ZE8% [3.07Eme
h) Lifd 26 12076ms
i) 300 2.54% LEAESms
heh 286 ZATH 1L 153
f 734 2oanE R rAAma
HED 2354 17T 5084ms
Ky In? L7EY. 70dim
he 7t 1.57% 7.0B4mx
[SR 27, 1 1 S B TEL T

COM Net Page Speed Mage Speed Activity. Yilgw. QL
ime. | . Avg. M Max . S

43 Sgim- A3.89ms A3 8Bms 43 EOms eambio?me..0.1, 3248 (line 8|
tadbimy D252ms- GO00Dms . 30 7EEmMS arcade 0,198 s iline 4]
25 588ms. D0GEms 0.00Llms 0 I0Ems wreade- 4. 0,10 (line 21
0. 00%ms- D2 Tms O 0BSms ¢ 0SB arciside 0, 1.90,)x (lina 4)
19.708ms 18 70Ems 18.T0ORma L5 TOAms ad_no 1.1 (hne 51
13187me 0485ms O.038ms 1.71Ema aienle -4 10,0 tine 2|
2785ms: DO2SmE GOLSmE D524ma arcade_0.1, 98,45 iline 41
L2 0F6ms Gl dms O 00Gms 035ms arcada_0.1,98)s {line &)
L1.8C%ms D03ma C.00Lms O0BESms arcade 0198y iline 4)
35.375ma ©.128my &.0d4mE 032 ms arcade 0.1 58,)s tline 4]
10 715ma. DESma G 0,3 13 wronde—S. 0,100} n iline 2]
& a05ms G0ldms (L 0Tms 0 153ms arcade_0.1.90fs (line &)
115 %2mw. 0.557ma F023ma 14 S072ms arcade_0.1.98jx (line 4)
FLESGms T 98 ms G I8ms 4.77dms arcade 0.1.98.)s iline 4)
£ DAf s n AT A nlosa s n.i_'ll.-u... — P e alie —~ mh

Figure 10-2. Firebug Profile panel

K] 10-2 Firebug 1 A8 MR

Console API 237 API

BR

Firebug also provides a JavaScript interface to start and stop the profiler. This allows more precise control

over which parts of the code are being measured. This also provides the option to name the report, which is

valuable when comparing various optimization techniques.

Firebug 4845 1 JavaScript #% 1 TR s AF L0 M ds o IX ARSI £ I B30 A 0RG . BIR 1R L I
Lhr 44, 78 AN R A BRI RS Al AT U (E

console.profile("regexTest");

regexTest('foobar’, 'foo');

console.profileEnd();

console.profile("indexOfTest");

indexOfTest('foobar’, 'foo');

console.profileEnd();

Starting and stopping the profiler at the more interesting moments minimizes side effects and clutter from other
scripts that may be running. One thing to keep in mind when invoking the profiler in this manner is that it does
add overhead to the script. This is primarily due to the time required to generate the report after calling
profileEnd(), which blocks subsequent execution until the report has been generated. Larger reports will take
longer to generate, and may benefit from wrapping the call to profileEnd() in a setTimeout, making the report

generation asynchronous and unblocking script execution.

FEXGE R BRI R as, AT AU E A AR S AT A IE B TP A7 s 0 e, LURA %
WA TSI A TR . 2R B A profileEnd() 7 ZE 4 2 B R AL AR &, E S SEHUTH
PR LRGSR . BOIRGE Z BRI RR AR, EAFIMGE A profileEnd() i FH 35 AR 7E setTimeout H,
R 5 AR R AT LA S 25 BEA T 1 AN B 2R A2 AT

After ending the profile, a new report is generated, showing how long each function took, the number of times
called, the percent of the total overhead, and other interesting data. This will provide insight as to where time

should be spent optimizing function speeds and minimizing calls.

ARG, AT R, o AR R ECE T T 2 KT, BORA R, B EJTRIA
b, RO B . X D DO A AR A s B b R D R P R B R AL TR
o

Like the YUI Profiler, Firebug's console.time() function can help measure loops and other operations that the

profiler does not monitor. For example, the following times a small section of code containing a loop:

IE4n YUI 2347 #&, Firebug [console.time() &£ A B T- I £85I F0 HA 23 4% A BE IR LR . 90 4n,
T N BRI BRI T U

console.time("cache node");
for (var box = document.getElementByld("box"),

1=0;

1<100; i++) {
value = parseFloat(box.style.left) + 10;
box.style.left = value + "px";

}

console.timeEnd("cache node");

After ending the timer, the time is output to the Console. This can be useful when comparing various
optimization approaches. Additional timings can be captured and logged to the Console, making it easy to analyze
results side by side. For example, to compare caching the node reference with caching a reference to the node's

style, all that is needed is to write the implementation and drop in the timing code:

FESE W A2 R Jm, IR TRL eyt 2R 0 o ST I HUAR R A ILAL Ty ide P21 & T LA ARG R Ao
WITFIR AR, IR 506 (i) Wi R flln, BERRAE T s g | I GAE T m B 5L, A8
FAETHINFE R A AN SE DA :

console.time("cache style");
for (var style = document.getElementByld("box").style,
1=0;
1<100; i++) {
value = parseFloat(style.left) + 10;
style.left = value + "px";

}

console.timeEnd("cache style");

The Console API gives programmers the flexibility to instrument profiling code at various layers, and

consolidates the results into reports that can be analyzed in many interesting ways.

el G APT AR G BENS RS 30R FH AN R RO 20 ARG, A5 4 R SRR TS o, T RUTI VR 2 8%
HHERAT 73 M.

Net Panel PZ&TEIHR

Often when encountering performance issues, it is good to step back from your code and take a look at the
larger picture. Firebug provides a view of network assets in the Net panel (Figure 10-3). This panel provides a
visualization of the pauses between scripts and other assets, providing deeper insight into the effect the script is

having on the loading of other files and on the page in general.

W, HEPIEREM AN, B MU HIRER, HHERIIE R . Firebug 7 MMM ML 7
28 SRR (i 10-3) o BEIETRGEHUE T BIAA AR B IE AR AR, AR AR A H e S
T FRCFR) 5 M AN 5 T 3 S) — R i

5 Comnle WEML ©3% Script OOW Nt~ PagsSpesd | Page Spesd Acihory Yilow O
Choar &k HiML €55 EEN %HR Immges Flash
ﬂ Het pane| attivaied dny regquests while the aet panel iy mactive are not shown.

» GET ad eo_L1js o Ivimg.com 553 F | 10w

* CET ad_eo_L1.js I lyima-cam 53 K Ay

* GET arcnde-seed_ " b I plmg com L KE

= GFT b 2.04js gl Lylmg aom c L1y Ak

b GET arcade 0 198 R Lypimg.com ¥T KR B G

* GET combo?metra 250 QK Iylmi.com 37 KB | Gme

| Breguests BIKE L

Figure 10-3. Firebug Net panel
] 10-3 Firebug W4 It

The colored bars next to each asset break the loading life cycle into component phases (DNS lookup, waiting
for response, etc.). The first vertical line (which displays as blue) indicates when the page's DOMContentLoaded
event has fired. This event signals that the page's DOM tree is parsed and ready. The second vertical line (red)
indicates when the window's load event has fired, which means that the DOM is ready and all external assets have

completed loading. This gives a sense as to how much time is spent parsing and executing versus page rendering.

FEAS GRS 1 RS B TR A AR B (DNS 8858, S fimaf, 4545 o B4 IEHZ (B
AR 35 H TR DOMContentLoaded SAF A HY I TA]. IS AF W] UL DOM 4 L2 i b e &
7. R AAERHEZ (LB fRH window] load FAF R IR A, E3R7s DOM Ciks 43 H AT ST
B O e, XA 7 NaE, KT ATNEEAT LU ITIRNE 3 B 2 22 I TR .

As you can see in the figure, there are a number of scripts being downloaded. Based on the timeline, each
script appears to be waiting for the previous script prior to starting the next request. The simplest optimization to
improve loading performance is to reduce the number of requests, especially script and stylesheet requests, which
can block other assets and page rendering. When possible, combine all scripts into a single file in order to

minimize the total number of requests. This applies to stylesheets and images as well.

EWMPREEIrERIR, TR TIRZMA. R b, FMAE LLEESHRmRMAE R T —
AR . B E AL RE R B (A] BRI DL AL AN R DT SR B, 5l AR R UK, BTSRRI E
PP DUAE S . R ATBERI TR, K Pr A G I — A 3Cft, Bl BRISRECR . IXM O Ex ek
AN R

Internet Explorer Developer Tools IE Ff & AR T E

As of version 8, Internet Explorer provides a development toolkit that includes a profiler. This toolkit is built
into IE 8, so no additional download or installation is required. Like Firebug, the IE profiler includes function
profiling and provides a detailed report that includes the number of calls, time spent, and other data points. It adds
the ability to view the report as a call tree, profile native functions, and export the profile data. Although it lacks a
network analyzer, the profiler can be supplemented with a generic tool such as Fiddler, which is outlined later in

this chapter. See http://msdn.microsoft.com/en-us/library/dd565628(VS.85).aspx for more details.

Internet Explorer 8 &4t 7 — M A TRA, €& —Mothds. MTRUNETIES, BrllAd 24
WM B g . 15 Firebug —#F, 1B s R H i an iy, T LA A o, FEseine], ik
A EHIE A ER LU ENEE RS, o R AR, JFSHathiids. BR8N o,
B B3 A28 vy DA A — Nl LRI EA Fiddler, 'C¥EABEH M H. D2 HHEES L

http://msdn.microsoft.com/en-us/library/dd565628(VS.85).aspx

IE 8's Profiler can be found with the Developer Tools (Tools — Developer Tools). After pressing the Start
Profiling button, all subsequent JavaScript activity is monitored and profiled. Clicking Stop Profiling (same button,

new label) stops the profiler and generates a new report. By default, F5 starts the profiler and Shift-F5 ends it.

IE 8 (IMERE M CPEFVE: AR SO R s ™) T RAFETT RN B TR A3 (THRSEH
RANGRTH) o fE3% T Start Profiling #8] (VE#i: (AT ORI THIRRCE L) Z R, rd)

JavaScript &SRS AT 04T . £t Stop Profiling C[a]l— M4, R BRI SCEAREA T) (FEET:
TR S A R E) B T R AR N T IR . BRAEREERER FS BBt as,

Shift-F5 #5186

The report provides both a flat function view of the time and duration of each call and a tree view showing the
function call stack. The tree view allows you to walk through the call stack and identify slow code paths (see

Figure 10-4). The IE profiler will use the variable name when no name is available for the function.

AR TR L, B S RROR I TRRIRFSE IR TR 30T — S REIRALE, S 1 eR i
Feo BEALEAEARRT LU P 2278 T B E At Z2 e AU RE 2 (S LI 10-4) o 1B 34 845 {5 e 2

AR R E L R

Flle Fird Disbie View Dutine Images Cache Togis, Validate |
Browaer Mode: 153 Compat Vew Document Mode: |7 Stardards = o5 X
HTML | CSS |5er‘11: Profier | |_-"-_' £ Profilr
Siant Picfiling CunestView [CatTiee =] \Fepor | x|
FLaclion | Da.ml‘J Irachazive Ti | |
= Funciion spply 2 A06. 25
=l g 2 0625
=1 'l 2 906 25
= Funchion oall 2 906 25
=y 2 a0E 25
= 2 18438
=) JSenp - weariclow dehnt Blaek 2 18458
= Funchon afniy £ 484 =
= I2ongd - waredows scpl Block Z 45455
= Fuschion apply 2 48453
& l.pjulbﬂ-:l:ﬁnhirt_','m\!g 2 404.780
|'E|:.nl:t - siimclon soriph 2 jB4.08
= Funchan. appl}! z 1248
= i |
Srmu h:IU|:| 2 HHR]

Figure 10-4. IE 8 Profiler call tree

Kl 10-4 1E 8 M e id F A

The IE Profiler also provides insight into native JavaScript object methods. This allows you to profile native
objects in addition to implementation code, and makes it possible to do things such as compare String::ind

with RegExp::test for determining whether an HTML element's className property begins with a certain -

IE 73 Hras 3o vl AR IR A JavaScript X 5)73k URAT LA IR AACRE R M I 2B X 5, A At RENS LA

String::indexOf A1 RegExp::test, A T-#fi7E— HTML JGZ ¥ className J& /2 5 HA R 2 (H.

var count = 10000,
element = document.createElement_x('div'),

result, 1, time;

element.className = 'foobar";

for (i=0; 1 < count; i++) {

result = /*oo/.test(element.className);

for (i=0; 1 < count; i++) {

result = element.className.search(/*foo/);

for (i=0; 1 < count; i++) {

result = (element.className.indexOf('foo") === 0);

As seen in Figure 10-5, there appears to be a wide variation in time between these various approaches. Keep in
mind that the average time of each call is zero. Native methods are generally the last place to look for
optimizations, but this can be an interesting experiment when comparing approaches. Also keep in mind that with

numbers this small, the results can be inconclusive due to rounding errors and system memory fluctuations.

WE 10-5 s, REEAFDFEIT AR Z AR R, SRR RE S oA R EOE s
fet o RO T, (HIZE — MHBRILESER . FIMHEEE, B PR, TRl & AR
ZEN ARG WAF BB T JCIES R D 4518 .

File Find Dissole View Cutlire Imsges Cache Tools Validate |

Browser Mods: [E8 DocumentMode: 8 Sendwds — £ X

HTHL | £S5 l Script Profiler | |S==ch =rmile P |
I 5{' %J Start Prafiling | Cunent View]Fn.nmii-:m :_I IHEpnﬂE ;I L8
e Wax Time fme] | Min Time ms) | URL
TGbnng indes0f 30 000 1662 000 1563 i
RegEsptest 30,000 KT L 15.63 0.00
Shing search 30000 125.00 0.00 1563 0.00

Figure 10-5. Profile results for native methods

K] 10-5 JRAEJTVE v e R

Although the IE Profiler does not currently offer a JavaScript API, it does have a console API with logging
capabilities. This can be leveraged to port the console.time() and console.timeEnd() functions over from Firebug,

allowing the same tests to run in IE.

FIRIE 73 M5 B 5T AN 124HE JavaScript 1 APL, H'e A — - H A H AZ DBE 45 5 APL. 1] ELF console.time()
A1 console.timeEnd() BRI EUM Firebug FREAELE K, MIIAE IE EFHATRIFE MR o

if (console && !console.time) {
console. timers = {};
console.time = function(name) {
console. timers[name] = new Date();
s
console.timeEnd = function(name) {

var time = new Date() - console. timers[name];

console.info(name +": ' + time + 'ms');

-

Safari Web Inspector Safari T 5 222%

Safari, as of version 4, provides a profiler in addition to other tools, including a network analyzer, as part of its
bundled Web Inspector. Like the Internet Explorer Developer Tools, the Web Inspector profiles native functions
and provides an expandable call tree. It also includes a Firebug-like console API with profiling functionality, and

a Resource panel for network analysis.

Safari 4 24t T /i85 T H, WIEMEESHTas, CENM A &S50/ . 1EW Internet Explorer JF
RNGTHEIFE, W R A 2% vl DL A R AR sR B A — el DU PR A B (RRED o e B fiF—
L Firebug BA W DERIEEHIE APL, W4 a$ik B — AN IR IR .

To access the Web Inspector, first make sure that the Develop menu is available. The Develop menu can be
enabled by opening Preferences — Advanced and checking the "Show Develop menu in menu bar" box. The Web

Inspector is then available under Develop — Show Web Inspector (or the keyboard shortcut Option-Command-I).

T] W DU B A, B SEHE Develop S22 TR AT A o AT IT Preferences — Advanced 3% Ay 4, L H1fE
SRR ERIR T RSER . ARG T LA Develop — Show Web Inspector 1 71 W LR A4 (BEALLFEM & 2

Option-Command-I) .

Profiles Panel Z3fTTEIAR

Clicking the Profile button brings up the Profile panel (Figure 10-6). Click the Enable Profiling button to
enable the Profiles panel. To start profiling, click the Start Profiling button (the dark circle in the lower right).

Click Stop Profiling (same button, now red) to stop the profile and show the report.

M Profile 42447 FF 43 A THIAR (4] 10-6) .« £+ Enable Profiling 21 3 A 4> M IHI#R » #5 Start Profiling
AT (RIS @) o fids Stop Profiling ([Al—MEHL, BIAER AT (13 I IR

A
o

age | Lalls | function
b.34s 1 [prag ram)

B.3%

549.176mE S8 SIRME j97i%ms. 3 ¥ f st ookl
S 30408 S0 a824my 281538 ? Voangymous T i
5. 30dms S0.424my 28 152ms 2 M
56, 30<ms S6.424ms 28152ms 2 Fianomgmaus unction
EE.30ms SE.420ms J8152ms 2 | pragram|

JBime 2.5 14ms 2.8 ms 1 B lanavwmous functiong mrmbid &
SH.O0F 1M D AHIML LEISmS [3 w gerilutkhy nio
58071y B A%Ims 1. 815ms 12 L armta 46
5H.07Tme IR T LAISms i ¥ fanonymous funcion dal =Bk
S8.07Lms R ED LA1Gms 1 Ta Jig) L
GE.07Imi | BOIBIM LEZSms 1 ve aimna Ly
G807 Lms BOLE%AMmE LE1Sms 32 W Lo ryinaLE funch, Cumie 1S
SHOT L AL S%3my Lalims 1 W lanommos fu. | Coonie i
SA.OFTMS | ROLEG3m 1 a15me il W LANOYMOuS . L0 T
58.071ms | BO.I%Ims LAl5my il 'y Eqcig 2
S8.071ms | GDL393Imx LA15ms 32 ¥ [orogrim)
‘5H.071ms BO.203me 118w 32 [programi
5477 1ms 52.7TLms 252 me 181 F eaaluoia
31.204ms FL36Ims 15 &li1ms 2 F sendschscribe
29.153ms 2163 ms rA43smse iy » anpenaC il

Figure 10-6. Safari Web Inspector Profile panel

K] 10-6 Safari [1) ™ TS £F 45 7347 IR

Safari has emulated Firebug's JavaScript API (console.profile(), console.time(), etc.) in order to start and stop
profiling programmatically. The functionality is the same as Firebug's, allowing you to name reports and timings

for better profile management.

Safari #{}j T Firebug] JavaScript API (console.profile(), console.time(), %54%) , A LLHTEA A shF1{E

Wb ThBe. MINEES Firebug M58 2R, SCVRRG RS ATH I BEAT dy 44 LASE S S i 0 A i 2

Safari provides both a Heavy (bottom-up) view of the profiled functions and a Tree (top-down) view of the
call stack. The default Heavy view sorts the slowest functions first and allows traversal up the call stack, whereas
the Tree view allows drilling from the top down into the execution path of the code from the outermost caller.
Analyzing the call tree can help uncover more subtle performance issues related to how one function might be

calling another.

Safari &4t /" —NEAE (RN R AT REor, MR ClEmrh) AT oAk B
WAL LR e i 1 s AR AT, SC VR H AR, A A I T A B 2 AR AN R T B
BATERAR. 08B AT B 148 55 5 o8 OB VAR IO PR RE R

Safari has also added support for a property called displayName for profiling purposes. This provides a way
to add names to anonymous functions that will be used in the report output. Consider the following function

assigned to the variable foo:

Safari IR 1 T —~4 4 displayName fEE L H T8 B CR4AE T —MOyE 2 R B e B RS T
WINAFRRI . 58N XA ESS L = foo [

var foo = function() {
return 'foo!";
s
console.profile('"Anonymous Function');
foo();

console.profileEnd();

As shown in Figure 10-7, the resulting profile report is difficult to understand because of the lack of function

names. Clicking on the URL to the right of the function shows the function in the context of the source code.

WK 10-7 s, BOED B, RS LI SR ECA R URL LR)7 50 87~ H B B

Calie Function

B : - = :
b La2% LAz 1 {anonymous function} AngA kR

Figure 10-7. Web Inspector Profile panel showing anonymous function

B 10-7 94 SR i PR 2 M TR ARG ks e 42 v

Adding a displayName will make the report readable. This also allows for more descriptive names that are not

limited to valid function names.

I — displayName J& PERFAE AR & ARG A3 WS I SE B FiR 2 SR A% A ANV R T8 e

var foo = function() {
return 'foo!";
s

foo.displayName = 'l am foo';

As shown in Figure 10-8, the displayName now replaces the anonymous function. However, this property is
available only in Webkit-based browsers. It also requires refactoring of truly anonymous functions, which is not
advised. As discussed earlier, adding the name inline is the simplest way to name anonymous functions, and this

approach works with other profilers:

Wik 10-8 7, displayName BUZERUAR THE A A, (Hi2, WEMEAGEH T2 T Webkit FIH % as. &
BRI B AL M 2 R, FTUUAEBOX 2. IE g Arihie s i, asin B4 IR e 4 1 4 iR S
AT v, T HLAT DALZE HoAh o #r s b T4

var foo = function foo() {

return 'foo!";

; - _! Funt:im?

1710 | z?m|

| lamtes anodhimlE '
| |

-u‘!’._| ; l Heavy (Bottom Up) % % _ <» :-:. o _—

Figure 10-8. Web Inspector Profile panel showing displayName

K 10-8 M IR A o AT R TR T displayName J& 14

Resources Panel FIRER

The Resources panel helps you better understand how Safari is loading and parsing scripts and other external
assets. Like Firebug's Net panel, it provides a view of the resources, showing when a request was initiated and
how long it took. Assets are conveniently color-coded to enhance readability. Web Inspector's Resources panel

separates the size charting from time, minimizing the visual noise (see Figure 10-9).

BEPR AR T B S A A Safari DIASCRN AR AT BIAS LS AR AN AR BRI 53 B8 Firebug f) R4 45 1
B et T RIEAIE, SR AN RRETER U EREE T2 KA. SRR R 2o LU 8
S o R E A I BRI I ACR RO R S IR T, 4/ TR BT EE CnlE 10-9)

Images Scripts
oS & 3Bx

HESOUACES . LM L 12 o

{ :2 hitp i [m.www yahoocomi |

| arcade 13,058 |
=2 b g F i

| e

combe
|l ceon -

!j m#ﬁ:ﬂi"ﬂ F_ﬁll-'l -1

page_bg slate 070609, gif

{ Al yreng i e] i b B

€

i r.g?l' I
L Tyia.comat emenipipssuures |
3 yahoo_logn_us 0615089 .

Lyireey comref a s {emel

@

| usorite_pg_slate_n62203,
| i i.vﬂ-r’q?uh‘#hiﬂ_hflh| &

|'=| arcade-zesd 0.1.0.12 e
= | Lmglenmidadiindare | =

Figure 10-9. Safari Resources panel

K] 10-9 Safari %5 IR

Notice that unlike some browsers, Safari 4 is loading scripts in parallel and not blocking. Safari gets around
the blocking requirement by ensuring that the scripts execute in the proper order. Keep in mind that this only
applies to scripts initially embedded in HTML at load; dynamically added scripts block neither loading nor

execution (see Chapter 1).

TR, MBI ESARE, Safari 4 BERSIFA TN IATT AN AR IE . Safari S8 HEPHIAERGTIE K,
I E R ORAAL R BB BT« 18I0, X OGE M T HTML I A A LERTR AT, ZhAdsin i
JIARA SO, WASYEIT (BIH—F) .

Chrome Developer Tools Chrome &R A R T B

Google has also provided a set of development tools for its Chrome browser, some of which are based on the
WebKit/Safari Web Inspector. In addition to the Resources panel for monitoring network traffic, Chrome adds a
Timeline view of all page and network events. Chrome includes the Web Inspector Profiles panel, and adds the
ability to take "heap" snapshots of the current memory. As with Safari, Chrome profiles native functions and

implements the Firebug Console API, including console.profile and console.time.

Google 14/ ¥) Chrome W W a8t T —&JF & T HAE, 4 —% T WebKit/Safari M iUk fra%. BT
AT 288 i) R IR AR 2 A1, Chrome Ay T AT DU THIAR 99 4% AR I T — A B TR] 26 ALK .- Chrome B8 I 17T
RSB AT AR, W0 TR AT HE A PR DhRE . B Safari JIFFE, Chrome BEWS 7347 Jm A= pR £ I 5K

LT Firebug B & API, £L$E console.profile 1 console.time.

As shown in Figure 10-10, the Timeline panel provides an overview of all activities, categorized as either
"Loading", "Scripting," or "Rendering". This enables developers to quickly focus on the slowest aspects of the
system. Some events contain a subtree of other event rows, which can be expanded or hidden for more or less

detail in the Records view.

W 10-10 fros, N RIZE IR AL 1 BT i sl 1530000 e, <BIA, BER. XA
TFR N GART LLPR S E b7 R G0 B R IR 7)o FEEE SR & HAL AT A0 78, fER S AL AT LU T
BRFE R LA S 7s BE 22 R D T

i TIMELINES i o i Win AL LB Vs]

Loading [— —— — =, []

Iﬂi‘*’m (i e =y = e s

HRendering | L] i e
i
|
|
|
|
L
b
A4

@Sl a
B4 Times Fired (197 M

@ Paiat (17145 .

W Send Raguest | #
Wsena Requastl,. .
B Timer Fired (223 [+ =
@lowt’ @
8 Faint 1863 = 407) -]
1 Timer Fired (2241

9 senc kagquest(

B Send Reduesid

(o T P SR N

wEE "

| . vwen yahoo.com | . wsw. flickr.com §

Figure 10-10. Chrome Developer Tools Timeline panel

K] 10-10 Chrome FF /&3 1T H 1R 8] £k AR

Clicking the eye icon on Chromes Profiles panel takes a snapshot of the current JavaScript memory heap
(Figure 10-11). The results are grouped by constructor, and can be expanded to show each instance. Snapshots can
be compared using the "Compared to Snapshot" option at the bottom of the Profiles panel. The +/- Count and Size

columns show the differences between snapshots.

sl Chrome 73 My IR FOARES EIbR, AT 2407 JavaScript HE A FERIPRIE (& 10-11) o HA RUZ R
TS, TUURITEER RSB PR AT Tk BE AR AR) LS DR HE B TR BEAT LU i +/-5 1Y

Count ZF1 Size 71 E 7 HER & 2] fH) 72 R o

— i irage | gGonsgle Q-
Pl PROFILES Censtructor —— | Count NNSRESW = Count = Size
— = (CODE) S000 | 3ATINE V] 0B =
iy Prafile 1 * folonis wore |1 SaEna i f
= e Sering 20354 | 574,39 [il
"l‘ Prafile 2 F Lanonymaus) a3 | TS o |
—J' | b Ohiect 0BG | 202.54.., I (i
= b Ay 1713 | 130.82. o il
i oflle 1
[a] ot » Funciion 1476 | 59.17K8 0 oh
i & (plohal propary) THIN | SEOEKE] i}
HIEAN SNAFSHOTS
o --_-1 | b HTNLDIYBe mant 78| LLABKS 0 08
! f"_ﬂfﬂ, AN S b Denent 126 | 00BKE ! ()
_ & FTMLERment WY | wBIKR o 1
Snppshot 2 | RegEkp 1uu| 35508 i} S
B Usha WML TINE TR |y i TasteCeiBlement 344 | BOBKE 0 08
1 hantliok b HTMLDGEumant 1 | B 4EKA B ol |y
8| T BB B LB 16TAD & e i ;
O e
2690 3E
== 8 o | Compared to Snapshot 1 3 | O | 8142

Figure 10-11. Chrome Developer Tools JavaScript heap snapshot

K] 10-11 Chrome J¥ & A 52 T E.fJ JavaScript HE Py /2 HL I

Script Blocking JiIA<FH %

Traditionally, browsers limit script requests to one at a time. This is done to manage dependencies between
files. As long as a file that depends on another comes later in the source, it will be guaranteed to have its
dependencies ready prior to execution. The gaps between scripts may indicate script blocking. Newer browsers
such as Safari 4, IE 8, Firefox 3.5, and Chrome have addressed this by allowing parallel downloading of scripts
but blocking execution, to ensure dependencies are ready. Although this allows the assets to download more

quickly, page rendering is still blocked until all scripts have executed.

flegs b, WIS AR RE R Y — DMIATR SR o IXFRMOE A T8 BLSCAEZ M BLR G AR o B — IO
T 55— TSR SIS I SCE, B TR SO CRIETE B AT L AT 1 o BRIAR 22 A) 22 BELAG 1 1
ASHGBHZE T o Hiali WA 1% W0 Safari 4, IE 8, Firefox 3.5, F1 Chrome fift gRix A a1) 00 Je SO VR FHEAT K,
EFHZEEAT, DAGRIERBUA D Es 4r 1. BRI SR FECED, TUmERIH S, BE2E
A HREARAT <

Script blocking may be compounded by slow initialization in one or more files, which could be worthy of
some profiling, and potentially optimizing or refactoring. The loading of scripts can slow or stop the rendering of
the page, leaving the user waiting. Network analysis tools can help identify and optimize gaps in the loading of
assets. Visualizing these gaps in the delivery of scripts gives an idea as to which scripts are slower to execute.
Such scripts may be worth deferring until after the page has rendered, or possibly optimizing or refactoring to

reduce the execution time.

FEVAS B 225 A — A A SO UG A S2 18 T AR BEA™ 5, (B A9 X e MO S8 ot AT T RER
BT . BIAS IR ok i B E DUIRE S X R S i AR T RA Bl F e n kst iz
AIZEE . DUEIE Sos ARIE ARSI (R 22 57, AT R AR IE AT RS (B AS . SR SR B A2 HEIR) BT Vi
P2 JE PN, B RUAT BEMLAL BCEE A LA A AT I 18] o

Page Speed

Page Speed is a tool initially developed for internal use at Google and later released as a Firebug addon that,
like Firebug's Net panel, provides information about the resources being loaded on a web page. However, in
addition to load time and HTTP status, it shows the amount of time spent parsing and executing JavaScript,
identifies deferrable scripts, and reports on functions that aren't being used. This is valuable information that can
help identify areas for further investigation, optimization, and possible refactoring. Visit

http://code.google.com/speed/page-speed/ for installation instructions and other product details.

Page Speed /2 Google &R IT A BT A — TR, JakAE Firebug #ifF %A, % Firebug %%
TR — AR BRI 1 oG D BN A5 R e AR, B 1NN TRl AT HTTP R, E3E W7 JavaScript f# AT
AEATPrAE B (I TR], 48 B3 R A, RS AL R AT P e . XA (B A0 A5 BT 75 B i
SERE— BRI, Oite, DL ATRERIE R . U5 http://code.google.convspeed/page-speed/ ok |- 24 K H

= b A1

The Profile Deferrable JavaScript option, available on the Page Speed panel, identifies files that can be
deferred or broken up in order to deliver a smaller initial payload. Often, very little of the script running on a page
is required to render the initial view. In Figure 10-12 you can see that a majority of the code being loaded is not
used prior to the window's load event firing. Deferring code that isn't being used right away allows the initiz

to load much faster. Scripts and other assets can then be selectively loaded later as needed.

Page Speed [HIH LA /) T 4EIR JavaScript ZEI, $5 HHWIRLLSOAF AT 3 e AE IR B R LASR 208 — BN
Gt . JEH, SO _EIEAT R BIAH D F 2HE R . 7R 10-12 RS RTLUE], RER U
ZJa, ASAE window & load FAFZ ATH S FEIR OO IREEA ST % F 2104 ChS AT AEAS IR 1L
JUIRDANZG R SR e U R ZE S, BRIACAN L SR Y mT DU SEREUR J5 hn 2

*—" & N Coampls HTRL £55 Seeipt DODM Met Page Speed » Page Speed Arngin
redy

a r E.':Q!ﬁhm&' ;mrnnl _lw;S-l:rlul
& ¥ Defar lnading of lavaScrint

98.4% of the JavaScrpt loaded by this page had not baén invoked by the time the onload
handler completed. (Cached Result)

& Bt/ o v yalioo oo 39 furctions uncelled of 41 votal fupctions, (Teggle Funttion
View)

» hitp://Lylmg.com/a/lib/arc/arcode_0.1.98 45 716 functions uncalled of 733 total |
funcoions. (Toggle Function View

* combo?matro/uipluging (autohide_service 0,15 |s&me... 551 function: uncalled of §52
wotal functians, (Toegole Function View)

Figure 10-12. Page Speed deferrable JavaScript summary

] 10-12 Page Speed [FJAEIR JavaScript = 45

Page Speed also adds a Page Speed Activity panel to Firebug. This panel is similar to Firebug's own Net panel,
except that it provides more granular data about each request. This includes a breakdown of each script's life cycle,
including parse and execution phases, giving a detailed account of the gaps between scripts. This can help identify
areas where profiling and possible refactoring of the files are needed. As seen in the legend, Figure 10-13 shows
the amount of time spent parsing the script in red and the time executing in blue. A long execution time may be

worth looking into more closely with a profiler.

Page Speed 1ty Firebug ¥ 1 — > GTIHE G SR o JIIHCELT Firebug B RIS IR, A E
RN SRAR A T SE MR A R B . HR SR B A A I et o S —— TR Is AT B, e T
FEIAS Z TR IR 18] 22 5 PR AR T o XA B 0 W DX 7 R B0 R DL B BT LS SO IE Q% it A 1 &
10-13 5877 HH £L 60 (1 BEDAS AR AT B TR 0 €0 PRI AT I] o A AT B] DR P D S B 55 B2 AT T) 20 B 2R A 9 o

' U (nnspis MIML (SS Smiipt D0M et PageSpeed Page SpeedActatyw |
| Bwcord S Show Unmalled Functions Show Delsyabls Functions
URL e . 12000

'y |
#idfaatdassa:] ==

Jeusdeenbe e 5

NP TR FRE DL R

Flrefo Jawazcript -
B Connechon Widit) TS Corrad Cemnected - Bl Sand
B Receie B Cachets W Dabs Avalsble B 15Pare B 15 Euecuke

Figure 10-13. Page Speed parse and execution times

K] 1-=13 Page Speed HIAENT FIIZAT I [H]

There may be significant time spent parsing and initializing scripts that are not being used until after the page

has rendered. The Page Speed Activity panel can also provide a report on which functions were not called at all

and which functions may be delayable, based on the time they were parsed versus the time they were first called

(Figure 10-14).

F e KRN AL SR AE AT AN AT AR AL AR b, TR LA AR TS Qe 2 Jr 3t ¥y i 2. ST s 1 1
PO PR BER T T L IIR L s BN ORI A H I, W s BT LA IR, B T EATTRO MR I 18] LK AT T3

— RO R E] CanlEl 10-14) .

IPsge Spaed Bolivity Lislesiin s RS -10f %

FEratrocstion | Neve | Sowte |Filz |®
NI s 750 s 1062 ms = furcticn (d, a, &5 £ var e, =0, chtEs L A
3L2 me 7a0 ms Loa2 ms SO ... furction (i o, o34 € =C == wl.. hdpd..
212 me 750 rric 1052 s anoymi.. fuction (3 § Feturn s 82 L ke,
312 me 750 s 1062 ms anonym... function 04 yar b = argurents.,, hitpe L T
F1T e FEH e 1D e [p— ﬁrrl-u—u-w. £ I-“LJ' r:uh Lzl h:n.:u-l-f |-|H'r| o

©IPage Speed Activity - Uncalled Funetions R - = Iglil-
it Tirre | Mame Coiits | File |m
S0 evalsorint functon evalSoriptli, 25 4 i (254 DoagasHurl.. htip e, =
TS0 ms LT fumcton nurrds, b £ refen 3[0] 8 parselntiD cwrZSS.,, Hip o fdw.., —
750 e aronymous functon 3§ if (O =Resdy) { refrm; L o P N,
750 mE Aoy mous furiction 0 { it (1. sReaoy) { FEMIT, r v b e

720 ma aroryrnous furction 3 { if (D =fe=dy) { retrm; ¥ vor g e

750 e bindReady function hindZeady() 4 if G4 return; N 3) 2

750 s Arony oS functon O { rehsn thislength; § bt e,

75 me aronymous functon (a) 4 rehey 3 == undefined 7 O.makedrray(hi.. btpside...
™ me ANOnymous funcoon o) 4 va 2 =0ilbi a.prevObiect = tis; .. et _:i

Figure 10-14. Reports for delayable and uncalled functions

K] 10-14 7] SEIE BR 2R A T B8 £)40 2

These reports show the amount of time spent initializing the function that are either never called or that could
be called later. Consider refactoring code to remove uncalled functions and to defer code that isn't needed during

the initial render and setup phase.

AR 7 T AR MR T B3 LR A i 1 eR ST a6 A6 BT 0 5 R TR] o 2% R EE R A GRS M A
SERPEH AR e, JF HAEIR AN L 7R A AR TE JENTBCE B BOH AN 2 .

Fiddler

Fiddler is an HTTP debugging proxy that examines the assets coming over the wire and helps identify any
loading bottlenecks. Created by Eric Lawrence, this is a general purpose network analysis tool for Windows that
provides detailed reports on any browser or web request. Visit http://www.fiddler2.com/fiddler2/ for installation

and other information.

Fiddler /&—~ HTTP iR CHE, Ko WIRIELALaEN, CUBN NEIEI. & H Eric Lawrence 8%,
F&— Windows il FH IR 4% 4047 T H, A A0 B 2S5 i sk 4 i Egn R s . HeEmHeE 82
W http://www.fiddler2.com/fiddler2/.

During installation, Fiddler automatically integrates with IE and Firefox. A button is added to the IE toolbar,
and an entry is added under Firefox's Tools menu. Fiddler can also be started manually. Any browser or
application that makes web requests can be analyzed. While running, all WinINET traffic is routed through
Fiddler, allowing it to monitor and analyze the performance of downloaded assets. Some browsers (e.g., Opera
and Safari) do not use WinINET, but they will detect the Fiddler proxy automatically, provided that it is running
prior to launching the browser. Any program that allows for proxy settings can be manually run through Fiddler

by pointing it at the Fiddler proxy (127.0.0.1, port: 8888).

TRzt 2, Fiddler 5 IE M Firefox HEIEER. TE T BA: BIRIT— MM, Firefox BT H g8
W — ST Fiddler 3B 0] AT 530 ATAR 0 B8 i F S A 1 19 DU SR AR BE S 0 #T . I8 AT
iF, B WinINET 3815 #5383 Fiddler BT, USRS %I Faiiobkae. Saplinss (fi
Opera # Safari) AMfTH WinINET, {HE{ T4 Al Fiddler fOHE, WM &0 N 048 18 3 L BT IE7EIEAT 1)

1. AT BES U BAREL IR 70 AT LLF L B 45 2 ©fF A Fiddler {8 (127.0.0.1, ¥l 1: 8888) .

Like Firebug, Web Inspector, and Page Speed, Fiddler provides a waterfall diagram that provides insights as
to which assets are taking longer to load and which assets might be affecting the loading of other assets (Figure

10-15).

4 Firebug, MUK E#S, Page Speed —#F, Fiddler $Ef—MEAME, AR ASEMLLTE I HH TR K
BRI TA], MR BEIRAT REREN T e BN (B 10-15)

1 Fiddler - HTTP Debugglng Prox B

Fila Edit Rulee Tools view Help

=Jtomment ‘rRekse A Remose « b Resume all | & Stesming D avobecocs HFEnd 2l save | & Larc

Weh spssinns L= 2 e - e " = reine
e | (3 starees | 35 tnspectoes | Awotiesonder | @ serpiest suider | [Fikers [lnc|

HTTh

H]
ey -'-
focida 0 A2 ——
I ‘M
"UJ:T‘.M .-.I
Foud_desides-posr. g d
irkopo e |
B |
fybang 12 110508 png ..
Jeprte_masthead date sohil @ 5 |
& o
fesmba]
1 1 -l

Figure 10-15. Fiddler waterfall diagram

K 10-15 Fiddler 133 A7 &

Selecting one or more resources from the panel on the left shows them in the main view. Click the Timeline

tab to visualize the assets over the wire. This view provides the timing of each asset relative to other assets, which

allows you to study the effects of different loading strategies and makes it more obvious when something is

blocking.

71 E AL A DT A P — e AR . sl I TR 2R 28T LU B35 R 4% (R Bt U ALt T
BRI ORIRBE I RIS oF AT G SRR AT AR SUAS RTINS I OR LA B Ak BHL 28 1 S DR S A 1 4

The Statistics tab shows a detailed view of the actual performance of all selected assets—giving insight into

DNS Lookup and TCP/IP Connect times—as well as a breakout of the size of and type of the various assets being

requested (Figure 10-16).

GEAREE 7R 1P IR IR S B BE O 40 7 A B —— 60 F5 DNSS AR TCP/IP 3£ I (8]
TORIA BTN R EE R (K 10-16) .

LA B

G Bequest Bcer |
(V) et i

Reques © Coumts &4
Byt & SERTE 33,3237
Bytes Recesved: 375,180

Fequesty started ats 1785 PEC 1573
e pOFS eSS CoEE i eled AC: GFIA8I1NETNE
AQQregars SerSion CimsI DOZN0C1I2 9637
sequence [(Clock) Time: DOI0G: 6. RFIETED
OME Lookap Times: 1, 408ms

TP/ 2P Connect Timel g ims

RISFONSS CORES

WTTE/I08:
ATTF /1 002 51

WECPONSE EnTis (by Contene-Typa)

et FIEGR: 1, Ed@
applicationc-shoTimave-Tlagh: 33,088
applicacionf-jevaroripe: 10081
Extfosst 15,812

~Hgsdersl 18.4L6

image/ipeg: IX,862

1nng=.’pni|: 14,383

textrhtmi ; IF,E0F

mEgESYIT dE, 654

Colopss Chart

Figure 10-16. Fiddler Statistics tab

K 10-16 Fiddler [H%5i+ & %

This data helps you decide which areas should be investigated further. For example, long DNS Lookup and

TCP/IP Connect times may indicate a problem with the network. The resource chart makes it obvious which types

of assets comprise the bulk of the page load, identifying possible candidates for deferred loading or profiling (in

the case of scripts).

TR KR T B R R S a3)y Y AT BRI A . 40, DNS 8 A0 TCP/IP JERZ N [K AT RER

R (90 255 e o 8 Yt P10 P T DA St e kARl SR TR) B A D TR AN 28 L BIASR, $R HR R 2 mp

BINEL, B Pt CREEASRAD .

L - -

Hei

YSlow

The YSlow tool provides performance insights into the overall loading and execution of the initial page view.
This tool was originally developed internally at Yahoo! by Steve Souders as a Firefox addon (via GreaseMonkey).
It has been made available to the public as a Firebug addon, and is maintained and updated regularly by Yahoo!

developers. Visit http://developer.yahoo.com/yslow/ for installation instructions and other product details.

YSlow T H GRS IR AR EEH 46 DL AL B AR I B s AT i AR Ik B . BRI HH Yahoo! NI Steve
Souders JF /%, {E4 Firefox ffiff: (11t GreaseMonkey) . & L& KA A —> Firebug #ifl, H Yahoo! &

N GV I BRI o 222 o FoAth ™= i 41715 2 I http://developer.yahoo.com/yslow/ .

YSlow scores the loading of external assets to the page, provides a report on page performance, and gives tips
for improving loading speed. The scoring it provides is based on extensive research done by performance experts.
Applying this feedback and reading more about the details behind the scoring helps ensure the fastest possible

page load experience with the minimal number of resources.

YSlow 2y ST MBS R AT 5y, b TR AR GRS, 40 AR A DA P (R . AR LRV 5
TR LRI B IR, IR RS B, TS E 2 AT, DT LU N R
R BB ST I A e

Figure 10-17 shows YSlow's default view of a web page that has been analyzed. It will make suggestions for
optimizing the loading and rendering speed of the page. Each of the scores includes a detailed view with

additional information and an explanation of the rule's rationale.

& 10-17 5271 1 YSlow ERIAKI K BT T ALE o B SR T A0 B DUivE i S i Bk 0F
TPHRE AL AR BEBN AN AE B, DU R B e R R

* 5% Console HTML €SS Script DOM Net | YSiow v

ALL (22) FILTERBY: CONTENT (6) | COOKIE (2) | €SS (5) | IMAGES (2) | JAVASCRIPT (4)

F Make fewer HTTP requests

Use a Content Delivery Network (CDN) Grade Fon Make fe FRLIE Xenn

Add Expires hoaders VLS QU HAR S L AR VLT

LT ||||1. & L'lhl|||1| I'll Il.l‘l.llllll

Compress components with geip

O ppand iy Vo mikmbigd ool Copvy e

Put C8S st Linph g, ceslnin i fanEr pegd oadd]

enw i wulthple zilpts inm ofe sohl

Pur JavaScript at bottom

AN ImMages mMane

: |
]?l"ll?in'n'nl

Avoid C55 expressions
rRead More

(IR NI] - [T]

Figure 10-17. YSlow: All results

K 10-17 YSlow: &#BskR

In general, improving the overall score will result in faster loading and execution of scripts. Figure 10-18
shows the results filtered by the JAVASCRIPT option, with some advice about how to optimize script delivery

and execution.

—RFOUR PR R AAVE R B RN AIE 1T, 18] 10-18 s i JAVASCRIPT #EXif
WIERER, A8, KT A A AEAT .

*’J % M Console HTML €55 Script DOM Net YSlow~
| Grade | Companants | Statistics | Teols Rulasers | ¥Slowiv2)
Clrlicl E {E} Dol pumilofiman TOI R CATHTERTY) .|||_l!|r-|: Vs o W LIRL PRl b s 0 W i

ALL (22) FILTER AY!: CONTENT (6) | COOKIE (2) | CS5(6) | IMAGES t}ll JAVASCRIPT (4] | 51

C Put JavaScript at bottom

N/ A Mk javaSeript and OS5 swternal

' B Minify JavaScript and €SS

A Removeduplicate javaScript and CS8 Gitage & od Mimﬁf JRVASCEIDE AN (G35

Figure 10-18. YSlow: JavaScript results

K 10-18 YSlow: JavaScript 455

When interpreting the results, keep in mind that there may be exceptions to consider. These might include
deciding when to make multiple requests for scripts versus combining into a single request, and which scripts or

functions to defer until after the page renders.

FE AR, R B R EAME I . G PRUE S 2 NI R G I — > i sk, Y
LG B A B o K. 4 A DRIV e 2 S5 A IR N2

dynaTrace Ajax Edition Ajax k] dynaTrace

The developers of dynaTrace, a robust Java/.NET performance diagnostic tool, have released an "Ajax
Edition" that measures Internet Explorer performance (a Firefox version is coming soon). This free tool provides
an end-to-end performance analysis, from network and page rendering to runtime scripts and CPU usage. The
reports display all aspects together, so you can easily find where any bottlenecks may be occurring. The results

can be exported for further dissection and analysis. To download, visit http://ajax.dynatrace.com/pages/.

dynaTrace /2 — 3 KI¥] Java/ NET PEREZ M TH, ERIJT RN B CL KA T — A Ajax B HTIE
Internet Explorer [RIPERE (Firefox MRS B o XA g T HAR AL T — A2 2| 28 v Pk BE 70 W48
MR GUNE 5, BIBIASZATIN (AN CPU (& FR AR T IRE B A 5 BV EAE ik, BrBUR
T LA Sy AR DU fr e . SR S MU T3t — P, e eI B TG

http://ajax.dynatrace.com/pages/.

The Summary report shown in Figure 10-19 provides a visual overview that allows you to quickly determine
which area or areas need more attention. From here you can drill down into the various narrower reports for more

granular detail regarding that particular aspect of performance.

BERE W 10-19 B, 24t 7N ERALRI S S EAIEME R 2 00E . WX
FTLARA ZIE AR RIR S , SER vk RER e 2 4.

The Network view, shown in Figure 10-20, provides a highly detailed report that breaks out time spent in each
aspect of the network life cycle, including DNS lookup, connection, and server response times. This guides you to
the specific areas of the network that might require some tuning. The panels below the report show the request and

response headers (on the left) and the actual request response (on the right).

PIZE LI A 10-20 Ao, ettt 1o T Mg A a A B BOE SR TR I AR PR IR GS . A4E DNS
R, SR, ARSI TRl BT PREE N 4 45 AT B 7 2R BE R 8 X T T AR AR
TIERANMI AR CZED) FASERRIE R AR, CH{D

P ilvnaTrace AJAR Edition - , =10 =]
Fila “iow Halp
J s B | I |
ldeloome | 2 EL.lrrl.r'n-ar:.r 5 1
hnu s, .;nm,r :sA I 1150 E= 2415
Respurces Metwiork
Murber of resources foadad viz networ: o frooy browsar cache Time spare on netweork aoaties. Parslielactriities ara accumalated,
n 6 1 K W 5 0 X & 5 W= 7 e}].m .-n.!
(I m - I'I-H-ml._
s |] sasarml
it TP G T B Jaaiai Figh BOE S Cuwnec B Sewsr # Transfse
Javascript Triggers lavaScript ARTs
e sl on JavaScrpt sxscution, Erigered by shown svents T sl on Javalorpl execition bom sown 48],
— 10 |
! : 20) e _14';.1“
] |8l m: =T "az7 my
HED mp—=.___
chimls & al s B0 gul B30 e L00E
S | = Laad B v naman edeuswbilwbawl 000 @ e

Page P ffyabhan comf
| U o t - — "E.; = = B

Javaserpt | I] . _ﬂ III_I-ﬂIIlI-

Rendaring | 1Bl & 1 B I EEERNE EE _
|| Metwork il | |
|| Ewent s J = ; : {

e B e e T L S T A S :
H | 13 23 a5 LR

Figure 10-19. dynaTrace Ajax Edition: Summary report

K] 10-19 dynaTrace Ajax Edition: & &5k

Selecting the JavaScript Triggers view brings up a detailed report on each event that fired during the trace (see
Figure 10-21). From here you can drill into specific events ("load", "click", "mouseover", etc.) to find the root

cause of runtime performance issues.

HEPE JavaScript fill &z 2S00 & 2 ERER ISR T A R AN A I e g s CanlEl 10-21) o M BLIR
B DUR AN BB R (“load”, “click”, “mouseover”254E) £ R HGITINEBE o] S AR A R K]

This view includes any dynamic (Ajax) requests that a event may be triggering and any script "callback" that
may be executed as a result of the request. This allows you to better understand the overall performance perceived

by your users, which, because of the asynchronous nature of Ajax, might not be obvious in a script profile report.

AR B A — A F A o] BEAUR TR EIE (Ajax) i8R, LURAE A i sk &5 BEmaaAT AT ARl
XA T PR SR AR 7 AR BB AR TR BE . BT Ajax BORRRAME, 78— MR T IR S BT REANE A

EgreifieEl

{1 LT 1] || £ 28 [T AL B FIE
{1 S H EE T i] i AT I i (5] 15 T ¥] - [5 Bl Fignd
Mg A m mpl. IO li = AY [T (= £ Wil
T T =k " I Al M N pa i i 15 0 AR
LU L] il 4 I = (X s om ok oer (523 BE kg =
e Wl as [- & - “ - = e - - - i e | |
Wopaest Deker =] litectpan ﬂ
puroept-Graoding g, (el waw b = pukls o ¥ Sedeal it
B DT T P T e R T TRashalos . Typs Zead =

FLLEIL | | T
- Anenk; P iad 0 [ivmesiil VI e ST L, Trami . S S Al

e nescAL L IRET B
:ﬁlmw'!f-\lr- WO PR TN P), D, Mk sl 11 i T gl e i L
" T ! t i o 1) e g vinpd
. i NAmssEpCE) | "4 o]
’ smatl Awielien o)
I L, e R AN e T { :
b - Fa el rres g = 1 SR e R o
b #iscl 7 liow @GR 154 9LR T tuiy bamfunliak = r.geelesiag | TEEACTH L DGFT
Lirnl Wy ppsle sl b farvinics 4 ShIA B W 8, gariag)
s EITIR sHis odulrapl =
;b FriuEm:
i Tl s =
I L] L o Ll

B rrvves kel €1 v maberbent]

Figure 10-20. dynaTrace Ajax Edition: Network report

K] 10-20 dynaTrace Ajax Edition: MZ4HR &

y | =iolx|
Fie Vs Halp
e [B5s [MEE A
[R wekame| T Summary | <=Fusats & -
- |-=nm!:|n= He-
| = Shaunngs IawsSorge (Mereil) | Mebaock (Mlsed) | @ engermg (Eibeeed) | Custom b b e (o1
| et FeiTi o = | etmaforitie] Sie| | At lind | Getin
VE s Amaa PROD. Oma7 B, | hasopt, molscodtwkenton <l
. BER 1077, 70 B61 Fo R | lavaSeriplt molgecutovent on <a clages"y--,
[] T3 93 15 ZLBTS Bl A B o AR W B T
o iy e ¥l | Ll mi2 mel AT el gmcied mrrit o s glei="pd.
- L] L 1=z 18 130 IEn . AWM ol eeyses el o o clensp-h.,
o I | 1] B1.58 N A TSRO @il B <img chisse® |
:a-l_ 1551 T A1 1506 H AWK MELRRENEr BYRE I wqwlcnps-'l...
LAty [[l Start] Burabirs s} 18 Jrnd 1g4|
e =][] core_L.0, 15 5,84 1218 61 1412
(4 M hidemodile cotiania L 218a0 14210
3 10 saromymoss wiLaRa LR RI1aS 147 03
S L w Tl Cim 5,02 (AT (PR 1]
o B Lyeatir i Basiilion JowaBer il (L] iR] 14185 _l
S [is DOLE Lirk (amT et - .05 115 141 56 |
= @ s=normymoE- [TTFE] 5,B3 [+ [+
= @ u it jui 0d.1 5.7 £ om -t
4l ; | I
| Zonty bt T .EEETE"] X [=
| {2 sxci_mimyesicit) i g chvornueL ¢ i .
L ﬁ‘;;"rh' ‘Caloulal q ¥ v ssorpt Ersuicn o, wowpplydn, Lji
ﬁudn.mm{ T L L nekT bt 1 return:
e t G oo i H
|| [Pt - 3 e e . &= (1] 7 =echnoervalik, mj. :
aRerder g (Schedubng bwo, 'z o] @ L[az]] ruturn |
@ ohariza 4 13 Ut nrEnck oo i n. iy =,
= I'l‘tﬁm 11 =] | iLjzz] o, incecvalt 3,
| :'j b i W & _nathy il capcsll Eemcbiomi] j
= — b
| 44| oo, [2T AETEAIEN | ——] 9 | = il
21 fea P [T roe selacted)

Figure 10-21. dynaTrace Ajax Edition PurePaths panel

K] 10-21 Ajax f dynaTrace [¥] PurePaths [IHZ
Summary & %5

When web pages or applications begin to feel slow, analyzing assets as they come over the wire and profiling

scripts while they are running allows you to focus your optimization efforts where they are needed most.

20 SN FE AR N, W AR SR BEIE, I AT TR RE, AR AENS S FHoRs Ty fE AL 7 22
E Al WAy

* Use a network analyzer to identify bottlenecks in the loading of scripts and other page assets; this helps

determine where script deferral or profiling may be needed.

AP 1A 2% 23 A 8 £ R DIABOBD AR RN L & DT B PR O 76, XA B e MR ERBIAS 7 EEAE IR I, B
AT Lo

* Although conventional wisdom says to minimize the number of HTTP requests, deferring scripts whenever

possible allows the page to render more quickly, providing users with a better overall experience.

PG 2 R AT TN B> HTTP 1R ECE, R IR NI LR T E e 5 R, [J
PR ST A A HR AR AL

* Use a profiler to identify slow areas in script execution, examining the time spent in each function, the number
of times a function is called, and the callstack itself provides a number of clues as to where optimization efforts

should be focused.

FEFIPEBE T oS 46 HH B ACE AT N R R O EE 70, A > e AT AL SRR IR R], LS el o P A
I A A 5 PRI SR g OR SR MR 3t)5 Y 24 85 T3 AL

* Although time spent and number of calls are usually the most valuable bits of data, looking more closely at how

functions are being called might yield other optimization candidates.

IR B IR TR P BB 2 Bl P A AR AL ISR N A AR s B AR, arae R
e %,

These tools help to demystify the generally hostile programming environments that modern code must run in.
Using them prior to beginning optimization will ensure that development time is spent focusing on the right

problems.

R T BAE AL PUAACRE By ZH2 AT SRR AT AN B o AETT RO TAR Z AT RE AT EA], SR IT RN

(AL FHAE A R LR) 70
(G302

	目录
	第一章：加载和运行
	非阻塞脚本
	dom加载脚本
	ajax脚本注入

	第二章：数据访问
	作用域链
	标识符识别性能

	原型链
	嵌套成员
	缓存对象成员的值

	总结

	第三章：DOM编程
	innerHTML VS DOM
	节点克隆
	HTML集合
	访问集合元素使用局部变量

	元素节点
	querySelector
	重绘重排版
	最小化重绘和重排版
	缓冲布局信息
	IE :hover

	第四章：算法和流程控制
	循环
	减少迭代的工作量
	减少迭代次数
	基于函数的迭代

	第五章：字符串和正则表达式
	第六章：响应接口
	第七章：ajax和XML
	第八章：编程实践
	第九章：创建部署
	第十章：工具

